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Abstract 

This paper employs a back analysis method to determine soil strength parameters of the Mohr-Coulomb model from in 

situ geotechnical measurements. The lateral displacement of a soil nailed wall retaining an excavation in Tehran city used 

as a criterion for the back analysis. For this purpose, a genetic algorithm is applied as an optimization algorithm to minimize 

the error function, which can perform the back analysis process. When the accuracy of modeling is verified, the back 

analysis is performed automatically by creating a link between genetic algorithm in MATLAB and Abaqus software using 

Python programming language. This paper demonstrated that the genetic algorithm is a particularly suitable tool to 

determine 9 soil strength parameters simultaneously for 3 soil layers of the project site to decrease the difference of lateral 

displacement between the results of project monitoring and numerical analysis. The soil strength parameters have increased, 

with the most changes in Young's modulus of the first to third layers as the most effective parameter, 49.45%, 61.67% and 

64.35% respectively. The results can be used in advanced engineering analyses and professional works. 

Keywords: Excavation; Back Analysis; Parameters Determination; Mohr-Coulomb Model; Genetic Algorithm; Python Programming 

Language. 

 

1. Introduction 

Geotechnical in situ tests do not permit the identification of the soil parameters directly, which is considered as a 

limitation in engineering works. Given the recent advances, finite element method can be used to design geotechnical 

structures and developed as a numerical analysis technique since 1960. In geotechnical engineering, this method is often 

used to model and simulate problems for the prediction of geotechnical behaviour. But, this method is limited by the 

mechanical properties of the soil. So, it is possible to overcome the limitation by back analysis method [1, 2]. 

Optimization methods have been used in the back analysis method and divided into two general categories, such as 

optimization is based on the math basics and iterative methods (iterative algorithms). In this paper, the strength 

parameters of the Mohr-Coulomb model are determined by the back analysis based on genetic algorithm. A number of 

studies on back analysis using genetic algorithm of various problems have been already carried out, among which the 

following can be mentioned:  

Gao et al (2016) used a back analysis procedure based on immunized genetic algorithm for parameter identification 

of elastic–plastic model for rock surrounding an underground excavation. The results showed that this model 

identification algorithm can significantly improve the computation efficiency and the computation effect [3]. 
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Jin et al (2016), in order to obtain soil parameters, they employed the inverse analysis using an optimization method 

based on a genetic algorithm (GA). This study aims to develop a new efficient hybrid real coded genetic algorithm 

(RCGA) being applied to identify parameters of soils. They proposed new hybrid is evaluated by identifying soil 

parameters based on both laboratory tests and field tests, for different soil models. All results demonstrate that the 

proposed RCGA has a meritorious performance of inverse analysis in identifying soil parameters [4]. 

Levasseur et al (2013) used a back analysis method based on genetic algorithm optimization (iterative method) to 

identify the parameters of an earth and rock fill dam. In their study, a genetic algorithm was used as an optimization 

strategy to search for error minimization. They introduced this method as a time-consuming and efficient method for 

optimization [5]. 

Hui et al (2015) conducted a study to optimize the dynamic design of tunnels in shallow rock masses. They used 

Python programming language to set up a dynamic model of tunnel span that could be analyzed and implemented via 

Abaqus software. They also used MATLAB software to develop a genetic algorithm optimization. They imported the 

dynamic computational model into the genetic algorithm optimization program by MATLAB software. They introduced 

this method for stability and design improvement in tunnels [6]. 

Bartlewska-Urban and Strzelecki (2018) employed the inverse analysis using genetic algorithms (GA) to determine 

value of the coefficient of hydraulic conductivity. The commonly used method for the determination of coefficient of 

hydraulic conductivity based on Terzaghi consolidation leads to an underestimation of the value of coefficient of 

hydraulic conductivity. They presented an alternative methodology based on genetic algorithms for the determination 

of the basic parameters of Biot consolidation model. The results showed that genetic algorithms are a highly effective 

tool enabling automatic calibration of model based on simple rules [7]. 

Zhang et al (2014) presented the applications of the differential evolution (DE) algorithm in back analysis of soil 

parameters for deep excavation problems. They used Python programming language based on DE to develop and 

incorporate into the commercial finite element software ABAQUS, a synthetic case and a well-instrumented real case 

(Taipei National Enterprise Center) is used to demonstrate the capability of the proposed back-analysis procedure. For 

the synthetic excavation case, the back-analyzed parameters are basically identical to the input parameters that are used 

to generate synthetic response of wall deflection. For the TNEC case with a total of nine parameters to be back analyzed. 

Results show that multiple soil parameters are well identified by back analysis using a DE optimization algorithm for 

highly nonlinear problems [8]. 

Qinghui Jiang et al (2017) proposed a multi-objective inverse analysis method for slope excavation in orthogonal 

design which includes numerical simulation, back propagation neural network (BPNN) and elitist non-dominated sorting 

genetic algorithm (NSGA-II) were integrated. The multi-objective model is constructed by minimizing a set of multi-

objective error functions between the time series of observations and corresponding calculated values. They used the 

obtain inversion parameters in a forward analysis to predict displacements. The results indicate that the proposed method 

can more precisely and reliably predict the slope deformation induced by excavation [9]. 

The estimated values of soil strength parameters are used as inputs in Abaqus software to simulate the problem 

directly. It is attempted to minimize the difference between the results of numerical calculations and measured values. 

Since the difference is reduced by changes in three parameters including the elastic modulus (E), cohesion (C) and soil 

friction angle (), it should be stated that there is no restriction on the geometry of problem, the number of parameters 

and the type of soil constitutive models in this optimization. 

In fact, back analysis methods allow the comparison of the results calculated by computational methods and the 

measured values. Back analysis methods minimize the difference between the calculated and the measured values 

through the monitoring of projects, back analysis methods can be used as effective ways to determine the soil strength 

parameters [2]. Back analysis methods have been used practically to determine soil strength parameters in geotechnical 

problems since 1980 by Peck. Optimization methods have been used to accelerate the achievement of ultimate goal and 

increase the accuracy of predictions in the back analysis over time [4]. Back analysis can be simply explained but there 

are fundamental questions about the existence and uniqueness of the solutions [11]. As it is assumed that the solutions 

are not unique, how can achieve all solutions via minimum iterations? A variety of methods can be employed to optimize 

the back analysis used in geotechnical problems, such as genetic algorithm [1]. The genetic algorithm is properly known 

as an algorithm which can solve complex optimization problems [12]. This method is very robust and effective, but does 

not guarantee the exact identification of optimal solution. However, this method allows the optimal results to be 

concentrated near optimal solutions [9]. The genetic algorithm is based on iteration and search. So, this method can be 

used to perform the back analysis. In this research, the genetic algorithm is used as an effective method for the back 

analysis of a soil nailed wall by establishing a link between MATLAB and Abaqus software using Python programming 

language. 
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2. Objective of Back Analysis in Geotechnical Problems 

Back analysis is mainly aimed to predict the events that are going to happen in next steps. For example, the events 

observed in step i must be able to predict the next events occurring in steps i+1 and i+2 [2]. 

 

Figure 1. Behavior of measured quantity with respect to construction stages [2] 

3. Genetic Algorithm (GA) 

Genetic algorithm is an optimization method inspired by Darwin’s theory of evolution. This method was originally 

introduced by John Holland and his students at University of Michigan in 1970. Later, the basic principles of genetic 

algorithm were developed by Goldberg and Renders. This method is one of the most well-known methods for 

minimization of objective (error) function in linear and nonlinear problems [14, 15]. This paper is conducted to optimize 

3 parameters (E, Ø, C) for 3 layers of the soil (in total 9 parameters) simultaneously. However, researchers such as 

levasseur, malecot, boulon and flavigny have optimized three parameters of soil like shear modulus, dilation angle and 

soil friction angle step by step (non-simultaneously) using genetic algorithm [1]. 

3.1. Stages in the Genetic Algorithm Optimization Method 

The main stages of genetic algorithm including:  

1) Defining the research space: The research space defined by genetic algorithm, the problem is solved as an 

optimization problem in the Np-dimension space. If each parameter is considered as P, restricted to authorized 

values of P between a minimum (Pmin) and a maximum (Pmax) [10]. In this study, the soil strength parameters such 

as Young’s modulus (E), cohesion (C) and soil friction angle () vary in ranges where the genetic algorithm 

approximates the values of each parameter for each soil layer according to the minimum error in terms of the error 

function and satisfying one of the convergence criteria. When the error function is less than the specified value and 

satisfies one of the convergence criteria, the genetic algorithm stops and introduces the optimal values. For 

example, E restricted to authorized values of E between Emin and Emax, C between Cmin and Cmax and  between min 

and max. 

2) Encoding individuals and populations: Each encoded parameter with a number of bytes (Nb) are forming a gene. 

The research space is meshed into (2Nb)Np elements and the choice of Nb is linked to the parameter values. Several 

genes form an individual (one point of the research space). A set of Ni individuals creates a population. 

3) Generating an initial population: Initial population is chosen within the research space. The objective function of 

each individual of this population is evaluated by FEM calculation. 

4) Selection, crossover and mutation: These mechanisms provide a set of solutions to be concentrated around the 

optimal solution in the research space. 

Selection: Depending on the minimum value of objective function, only the best Ni/3 individuals is selected for the 

next population. The best individuals will be considered as parents in the next population. 

Reproduction and crossover: Parents are randomly crossed over to generate new pairs of individuals. This process 

will continue until 2 Ni/3 new individuals (children), are generated. 

Mutation and generation of a new population: The parents and children create a new population together with Ni 

children. To limit the convergence problems and to diversify the population, some children will randomly mutated and 

change. Then, the objective function is evaluated for each child of new population by FEM calculation [10, 14, 16, 17]. 
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4. Error Function 

In this study, the error (objective) function determines the difference between measured and calculated values. 

Error =
∑ [ui − ui

∗]N
i=1

∑ [ui
∗]N

i=1

 (1) 

Where ui is displacement calculated by finite element method in point i; ui* is displacement measured by monitoring 

operations in point i; and N is the number of measuring points for a vertical section of the wall [21, 22]. 

5. Convergence Criteria 

In this study, the principle of the convergence criterion for determining when the process of the back analysis should 

be terminated is based on one of the three components of the convergence criterion is reached at two successive 

iterations. 

|f(xk+1) − f(xk)| ≤ εa (2) 

|f(xk+1) − f(xk)|

f(xk)
≤ εb (3) 

|xk+1 − xk|

xk
≤ εc (4) 

Where εa, εb, and εc are tolerances (equal 0.01).       

The first convergence criterion Equation 2 is based on the absolute value of change of the objective (or error) function 

obtained between two successive iterations is less than the specified tolerance. The second convergence criterion 

Equation 3 is employed for the percentage of the change of the objective function. The third convergence criterion 

Equation 4 is used for the percentage of change of target parameters. When one of the convergence criteria is satisfied 

at two successive iterations, the optimization analysis is terminated [18].  

6. Verification 

In this paper, the modeling and analysis were done by Abaqus software in comparison with the numerical results of 

the studies by Babu and Singh for verification. They analyzed a soil nailed wall in five stages by the excavation of 2 m 

by Plaxis software [19]. The lateral displacement of the soil nailed wall is affected by excessive uplift and has 

unreasonable lateral displacement, this problem is due to the soil elasticity modulus in the reloading situation is equal 

to the loading condition (the Mohr-Coulomb model) in Abaqus, which may lead to overestimation of uplift in the 

excavation bottom. To overcome this problem, the research of Hajialilue Bonab and Razavi has been selected. According 

to their research, the geometry should slightly change in order to achieve a more reasonable lateral displacement of the 

soil nailed wall via modification of the height of excavation bottom to the model bottom between 5 and 7 m [20]. In this 

paper, after modification of the geometry, the results of modeling and analysis of the soil nailed wall by Abaqus indicate 

a good agreement with the results of the studies by Babu and Singh in Figure 2 (error rate less than 5%). 

 

 

 

 

 

 

 

 

 

 

Figure 2. Comparison of lateral displacement 
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7. Introduction of Case Study 

The project consists of three layers of homogeneous CL-type gravel-clay as well as SC- and GC-type clayey gravel 

and sand, classified by according to USCS, which is modeled by five parameters of the Mohr-Coulomb model. The 

groundwater level is not considered in the soil geometry. Three parameters of the soil such as friction angle (), elastic 

modulus (E) and cohesion (C) are selected for the back analysis and the other parameters that do not have much effect 

are ignored. 

 Poisson’s ratio  0.3 

 Dilation angle 30o    

Jacky’s formula is also used to calculate the coefficient of lateral earth pressure.   

Ko = 1 − sin(∅) (5) 

In Table 1, a summary of geotechnical parameters used in the calculation of stability is presented. 

Table 1. Summary of soil physical and mechanical parameters of the project site 

Depth of soil 

layers (m) 

Angle of friction 

(°) 

Cohesion 

(KPa) 

Elastic modulus 

(MPa) 

Specific weight 

(KN/m3) 
Poisson’s ratio 

0-2 Backfill 30 15 60 16.2 0.3 

2-8 30 30 60 15.6 0.3 

8-15 30 30 60 19.6 0.3 

7.1. Excavation Protection System and Loading 

The west side of the project is selected for the back analysis. The west side was excavated in 7 lifts to a depth of 15 

meter. To stabilize the wall, a nailing system is implemented by angle of 15 degrees and 2 m distances between 

boreholes. The load on the wall is considered in accordance with Table 2. 

Table 2. The load assumed in analysis of west side 

Wall Location Load (KN/m2) 

West container 10 

7.2. Results Based on Project Monitoring (Observation Measurements) 

The monitoring operations are carried out to obtain and control the lateral displacement of the west side. In this paper, 

the value of displacement obtained by reflector No.23 (on the upper section of the wall) are used to perform the back 

analysis (according to Table 3). 

Table 3. Displacement reported at point 23 on west side 

Measurement point number Lateral displacement (mm) 

23 8 

8. Numerical modeling via Python programming language by Abaqus software 

According to the geometric properties presented in Table 4, the two-dimensional geometry of model is created. The 

excavation consists of 7 stages (lifts) to a depth of 15m and 30m in width. The lateral displacement of the west wall ux 

is used as a criterion for determining the soil strength parameters. Moreover, Python programming language is used to 

link the genetic algorithm and Abaqus software, which causes the genetic algorithm to complete the cycle of the back 

analysis. This cycle creates an automated process which includes all modeling, determination of the soil strength 

parameters (Input Abaqus parameters), analysis of the soil nailed wall, outputs, calculation and achieve the least value 

of objective function, satisfy a convergence criterion and introduction of the best-fit parameters as optimal parameters 

without human interference. The process is shown in Figure 3. 
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 Table 4. Geometric properties of the project 

Nails 1 2 3 4 5 6 7 

Nails length (m) 12 11.6 10 7 6 6 4 

7 lifts (stages) of excavation 1 2 3 4 5 6 7 

Depth of lifts (m) 2 3 2 2 2 2 2 

Total depth of excavation (m) 15 

Thickness of shotcrete and Young’s modulus 0.1 m, 21GPa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The back analysis process 

9. Parameters of Genetic Algorithm 

The population size (npop) and the maximum number of iterations (maxiter) are quantitative parameters, while rates 

of crossover and mutation are qualitative parameters. The increase and correct selection of the population size and the 

maximum number of iterations may improve the results; but exact rates of crossover and mutation cannot be determined 

to improve the results [22].  

10. Investigation into Effective Parameters of Genetic Algorithm 

In this paper, the role of effective parameters of genetic algorithm as a synthetic example is investigated by increasing 

the population size (npop), while the maximum number of iterations (maxiter) is constant. The assessments demonstrate 

that better results can be obtained by increasing the population size, according to Figure 4, which reduces the error rate. 

Figure 4. The process of error reduction versus population size 
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The number of objective (error) function evaluations increases as the population size (npop) or the maximum number 

of iterations (Maxiter) rises, while more finite element analyses are needed for further evaluation of the objective 

function in this study. Therefore, increasing the number of objective function evaluations is a time-consuming process. 

11. Back Analysis Results 

The results of project monitoring and numerical analysis show 73.7% difference in lateral displacement. The process 

of the back analysis in real problem should be implemented to reduce this difference (error rate), optimization of the soil 

strength parameters and satisfy one of the convergence criteria. In this paper, 9 soil strength parameters are determined 

simultaneously for 3 soil layers of the excavation by 254-times finite element analysis. The results of last 10 evaluations 

are presented in Table 5.  

Table 5. Estimation process of soil strength parameters 

No. of 

analysis 

Error 

percentage F% 

E1 

(MPa) 

E2 

(MPa) 

E3 

(MPa) 

C1 

(KPa) 

C2 

(KPa) 

C3 

(KPa) 

Ø1 

(deg) 

Ø 2 
(deg) 

Ø 3 
(deg) 

245 3.14 89.1 98.4 95.6 18.2 38.9 39.7 30.2 31.9 34.8 

246 1.48 89.5 98.2 98 18.8 34.7 40.4 30.3 31.5 35.1 

247 1.90 89.5 97.8 97.3 18.8 33.9 40.7 30.1 30.2 35.2 

248 2.85 89.7 97.6 96.6 18.1 36.7 38.6 29.9 29.6 35.2 

249 3.40 90.6 97.4 95.6 17.9 34.4 38.6 30.7 29.9 35.1 

250 2.36 89.5 95.4 97.6 18.4 36.3 39.8 29.9 29.7 35.5 

251 3.46 88.6 95.4 96.6 18.4 35.5 38.4 29.9 29.5 35.5 

252 1.88 98.6 97.4 98.8 18.6 36.6 40.3 30.5 31.2 34.2 

253 1.68 90.7 98.5 98.8 18 36.2 39.9 28.4 30.3 34.1 

254 1.61 89.7 97 98.6 18.8 32.8 39.9 30.5 31.4 35.2 

The convergence criterion is satisfied using Equation 2. In Table 6, the overall process of error reduction in the back 

analysis is shown from the maximum error to the minimum error (11 out of 254 from 66% to 1.61%) in the back analysis 

as well as the soil strength parameters. 

Table 6. The process of error reduction in the back analysis 

Error percentage 

F% 

E1 

(MPa) 

E2 

(MPa) 

E3 

(MPa) 

C1 

(KPa) 

C2 

(KPa) 

C3 

(KPa) 

Ø1 

(deg) 

Ø2 

(deg) 

Ø3 

(deg) 

66 69.6 85.3 52.3 12.6 30.5 41.5 33.5 25.4 26.3 

45 82.5 78.1 60.2 25 28.2 29.7 35.4 26.7 36.3 

33 86 82.5 68.2 25 28.2 29.7 35.4 26.7 36.2 

26.9 87.2 54.4 88.4 24.1 33 28.4 30.2 30.9 34.8 

18.8 81.2 84.4 85.7 18.8 29.9 30.7 29.5 35.7 34.6 

15 80.5 87.2 86.7 19.5 29.5 39 29.5 34.4 33.5 

11.6 93.2 96.7 90 18.2 40 36.3 32.6 28.7 29.9 

6.3 89.8 97.2 94.3 22.4 33.6 35.8 29.6 30.8 33.5 

3.4 90.6 97.4 95.6 17.9 34.4 38.6 30.7 29.9 35.1 

1.68 90.7 98.5 98.8 18 36.2 39.9 28.4 30.3 34.1 

1.61 89.7 97 98.6 18.8 32.8 39.9 30.5 31.4 35.2 

Figures 5 to 7 illustrate the process of error reduction in the back analysis using genetic algorithm versus the 

estimation of the soil strength parameters. The back analysis shows a good convergence between the results in 

accordance with the reduction of objective (error) function along the process. 
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Figure 5. The estimation process of Young's modulus for 3 layers by genetic algorithm 

 

Figure 6. The estimation process of cohesion for 3 layers by genetic algorithm 

 

Figure 7. The estimation process of soil friction angle for 3 layers by genetic algorithm 
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The optimal parameters obtained so far are considered as equivalent soil parameters; because many factors such as 

previous stresses, depth and area of excavation, overheads, consolidation, drainage operations, etc. So, these parameters 

cannot be regarded as actual soil parameters. In Figures 8 to 10, the initial and optimized values of the soil strength 

parameters are compared. Table 7 also presents the increase of optimal values versus initial values in percentage. 

 

Figure 8. The increased optimal values versus initial results of Young’s modulus 

 

 

Figure 9. The increased optimal values versus initial results of cohesion 

 

Figure 10. The increased optimal values versus initial results of soil friction angle 

60 60 60

89.7

97 98.6

0

10

20

30

40

50

60

70

80

90

100

1 2 3

Young’s modulus )MPa(

Initial values of Young’s 
modulus for 3 layers

Estimated values of Young’s 
modulus for 3 layers by GA

15

30 30

18.8

32.8

39.9

0

5

10

15

20

25

30

35

40

45

1 2 3

Cohesion (KPa)

Initial values of cohesion for 3
layers

 Estimated value of cohesion
for 3 layers by GA

30 30 30
30.5

31.4

35.2

27

28

29

30

31

32

33

34

35

36

1 2 3

Soil friction angle (deg)

Initial values of soil friction
angle for 3 layers

• Estimated values of soil 
friction angle for 3 layers by 
GA



Civil Engineering Journal         Vol. 4, No. 10, October, 2018 

2392 

 

 

Table 7. The percentage increase of optimal values versus initial values 

E1 

(MPa) 

E2 

(MPa) 

E3 

(MPa) 

C1 

(KPa) 

C2 

(KPa) 

C3 

(KPa) 
 (°) 


 

 (°) 

49.45 % 61.67 % 64.35 % 25.6 % 9.47 % 33.1 % 1.67 % 4.67 % 17.23 % 

The results show that the highest increase in optimal values is related to the elastic modulus. Underestimated values 

are applied in designs due to the limitations in field or laboratory tests. These limitations lead to inaccurate estimation 

of these parameters. These values may result in overestimated designs which are lead to non-economic projects. 

Figure 11 illustrates the process of decreasing lateral displacement of the soil nailed wall in three positions by the 

genetic algorithm, in accordance with error reduction from 66% to 1.61% differences.  

Figure 11. The estimation process of lateral displacement versus wall depth )Y( by GA 

Figure 12 also shows the value of lateral displacement of the wall and the value estimated by the genetic algorithm 

via determining the soil strength parameters at the final iteration (1.61% error). 

Figure 12. The comparison of lateral wall displacement versus wall depth (Y) 
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a) Initial population b) Final population 
 

Figure 13. The estimation process of Young’s modulus for the first layer versus the third layer in accordance with 

population 

  

a) Initial population b) Final population 
 

Figure 14. The estimation process of Young’s modulus for the second layer versus the third layer in accordance with 

population 

  
a) Initial population b) Final population 

 

Figure 15. The estimation process of Young’s modulus for the first layer versus the second layer in accordance with 

population 
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The initial population includes the first 15 results and the final population includes the last 15 results. As seen Figures 

13 to 15, the initial population is very scattered in part a, but the population becomes concentrated around an optimum 

point in part b using the genetic algorithm. This trend can be observed for other parameters, i.e. cohesion and soil friction 

angle, in Figures 16 to 21. 

  

a) Initial population b) Final population 
 

Figure 16. The estimation process of cohesion for the first layer versus the third layer in accordance with population 

  

a) Initial population b) Final population 
 

Figure 17. The estimation process of cohesion for the second layer versus the third layer in accordance with population  

  

a) Initial population b) Final population 
 

Figure 18. The estimation process of cohesion for the first layer versus the second layer in accordance with population  
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a) Initial population b) Final population 
 

Figure 19. The estimation process of soil friction angle for the first layer versus the third layer in accordance with 

population 

  

a) Initial population b) Final population 
 

Figure 20. The estimation process of soil friction angle for the second layer versus the third layer in accordance with 

population 

  

a) Initial population b) Final population 
 

Figure 21. The estimation process of soil friction angle for the first layer versus the second layer in accordance with 

population 
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12. Conclusion 

In this paper, the back analysis using genetic algorithm can improve the values of unknown parameters introduced 

into the finite element code in order to achieve the least difference between the results of monitoring and numerical 

analysis. The parameters of Mohr-Coulomb model with the greatest effect on the lateral displacement of the soil nailed 

wall are selected, for which the back analysis process is performed and the elastic modulus is determined as the most 

influential parameter. The investigations show that the correct selection of the population size (npop) and the maximum 

number of iterations (maxiter) as effective parameters can shorten the process until the optimal results are obtained. All 

the information can be used in engineering fields for further analysis in the future. However, this method is time-

consuming and involves a great deal of computations, which results in vast finite element calculations for determination 

of the objective (error) function. Given the idea of this paper, the back analysis using genetic algorithm can calculate 9 

parameters simultaneously for 3 soil layers in the excavation problem and achieve the convergence criterion and the 

minimum value of error. This achievement indicates that the genetic algorithm is a highly suitable tool and can be 

effective for a wider range of geotechnical problems. 
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