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Abstract 

Effective method used to deal with the corrosion damage condition of any concrete bridge superstructure will help decision 

makers of bridge management agencies to better choose repair material, and optimize repair method. Simplified corrosion 

index (SCI) is a very useful and simple index to characterize the actual corrosion damage condition of a reinforced concrete 

bridge superstructure. In this paper, SCI is calculated by combining the Corrosion Damage Index (CDI), Environment 

Change Factor (ECF) and Material Vulnerability Factor (MVF). The Analytic Hierarchy Process (AHP) method is applied 

to decide the weight factors of CDI, ECF and MVF. The Fuzzy-AHP evaluation method is used in this study to deal with 

the fuzzy problem of differentiating the different levels of corrosion indicators and to determine the appropriate weight 

factors. The asymmetric nearness degree method is applied to re-analyze the evaluation vector from Fuzzy-AHP method 

to calculate the corrosion damage level based on all corrosion indicators. A numerical example was presented to 

demonstrate the procedure and the benefits of the AHP method, and the proposed Fuzzy-AHP approach, along with the 

asymmetric nearness degree method, in dealing with the fuzzy nature of SCI calculation problem. 

Keywords: Fuzzy-AHP; Corrosion Damage; Index; Weigth Factors; Concrete; Bridge. 

 

1. Introduction 

Corrosion of reinforcing steel in reinforced concrete structures has caused deterioration and damage that require 

repairs and maintenance to extend their service life [1-4]. Consequently, there is an urgent need to develop adequate and 

simple tools for assessing objectively the corrosion damage condition of reinforced concrete bridge superstructure. An 

effective assessment of corrosion damage level is needed to allow for the decision makers of bridge management 

agencies to better determine the timing of repair/maintenance. There are several aspects that need to be considered in 

assessing the structures corrosion condition.  

It is common that different researchers may have different opinions as to the selection of appropriate corrosion 

indicators or the criteria for differentiating corrosion damage levels. As an example, the procedures outlined in 

CONTECVET manual [5] provide a very simple and linear approach to calculate Simplified Corrosion Index (SCI) 

based on Corrosion Damage Index (CDI) and Environment Aggressivity (EA). CDI is calculated according to the 

descriptive criteria of several indicators: chloride level, crack width due to corrosion, etc. As another example, Fazal [6] 

and Yehia [7] provided forty-three rules in developing decision-making tools for selecting appropriate repair methods 

and repair materials. Among the indicators considered include total delamination area, crack width, and others. 

AASHTO [8] and ACI 224R-01 and ACI 201.2R [9, 10] provide suggested critical values on concrete surface crack 
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width for controlling corrosion damage, and the minimum chloride concentration on reinforcement surface to initiate 

corrosion. However, these critical values in the standards or codes do not provide linkage between indicators and damage 

levels. The assessment of the corrosion damage level of reinforced concrete bridge superstructure based on inspection 

data is a complex task. This is because that there are many corrosion indicators that need to be considered. These 

corrosion indicators may be interrelated. More critically, determining these corrosion indicators based on inspection 

data may inevitably introduce uncertainty. When one attempts to relate inspection data to corrosion indicators, and 

eventually to corrosion damage level, the task has pronounced fuzzy characteristics. This is due to the fact that many 

inspection data cannot be clearly and quantitatively linked to structure corrosion damage level. Furthermore, some of 

inspection data is hard to collect correctly or completely. It is very difficult to or even impossible to obtain clear 

functional relationships between the changes of corrosion indicators and the changes in corrosion damage level. As often 

is the case, experts make decisions based on the corrosion damage level of a reinforced concrete structure, as 

recommended in [5-7]. 

In this paper, fuzzy algorithms [11-13] are used in developing tools for judging the corrosion damage level of 

reinforced concrete bridge superstructure. Fuzzy theory is a mathematical method to comprehensively evaluate things 

that are not easy to be clearly defined in the real world by using the thinking and methods of fuzzy mathematics [14-

18]. Through the fuzzy evaluation information about the priority of various alternatives can be achieved as a reference 

for decision makers to make a decision. The motivation of adopting AHP algorithm, a multi-criteria decision-making 

approach pioneered by Saaty [19-22], is that the linear combination method (or equal weight approach) in combining 

with equal weight of all corrosion indicators to calculate the corrosion damage level in [5] may not be reasonable. It is 

ideally to have the ability to assign different weight factor for each corrosion indicator, as elucidated in [23]. Typically, 

the AHP method [24] contains three principal steps: a) Compose hierarchical structure; b) Establish a pair-wise 

comparison decision matrix; c) Calculate criteria weight. 

The main objective of this paper is to present a new approach for determining corrosion damage level based on a 

comprehensive list of corrosion indicators from field inspection data. A comprehensive set of corrosion indicators are 

identified. Next, the AHP is adopted to help determine the weight factors for three important factors in determining 

corrosion damage level expressed by SCI; namely, CDI, ECF, and Material Vulnerability Factor (MVF). ECF is the 

same index value with EA in [5] used to calculate the SCI in this paper. To calculate CDI from the selected corrosion 

indicators, the Fuzzy-AHP method is used together with the asymmetric nearness degree method proposed by Wang 

[25]. 

2. Technical Approach 

The CONTECVET manual [5] proposed a linear method to calculate the SCI for assessing the corrosion process in 

reinforced concrete structures. The corrosion process is classified into four levels according to the following criteria: I: 

No corrosion, II: Low corrosion, III: Moderate corrosion, IV: High corrosion. SCI is determined based on two main 

factors (Figure 1): actual corrosion damage level represented by CDI and EA. The CDI is determined from six corrosion 

indicators as shown in Table 1. 

Table 1. Corrosion indicators and damage levels 

Corrosion indicators Level I Level II Level III Level IV 

Carbonation depth(m) 𝑋𝑐𝑜2
= 0 𝑋𝑐𝑜2

< 𝑐 𝑋𝑐𝑜2
= 𝑐 𝑋𝑐𝑜2

> 𝑐 

Chloride level(m) 𝑋𝐶𝑙− = 0 𝑋𝐶𝑙− < 𝑐 𝑋𝐶𝑙− = 𝑐 𝑋𝐶𝑙− > 𝑐 

Cracking due to corrosion(mm) No cracking Cracks 𝜔 < 0.3𝑚𝑚 Cracks 𝜔 > 0.3𝑚𝑚 Spalling and generalized cracking 

Resistivity(Ω m) > 1000 500 − 1000 100 − 500 < 100 

Bar section loss (%) < 1 1 − 5 5 − 10 > 10 

Corrosion rate of main reinforcement 

(𝜇𝐴/𝑐𝑚2) 
< 0.1 0.1 − 0.5 0.5 − 1.0 > 1.0 

Notes: 𝑋𝑐𝑜2
 is the actual carbonation depth; 𝑋𝐶𝑙− is the actual chloride threshold depth; 𝑐 is the concrete cover; 𝜔 is the crack width. 

 

Figure 1. SCI calculation scheme 

Corrosion Damage Index 

CDI (0-4) 

Environment Aggressivity 

EA (0-4) 

Simplified Corrosion Index 

SCI (0-4) 
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The CDI is calculated by averaging all levels of six indicators as given in following equation. 

n

leveldamageIndicatorCorrosion

CDI

n

i

i
 1

___

 
(1) 

Thus, CDI value can be any number between 1 and 4. This number is difficult to use by the decision makers. For 

example, a CDI value of 1.1 and 1.9 may be considered as having the same damage level by the decision makers. 

Andrade [23] suggested that it is desirable to consider different importance for each indicator in the calculation of the 

CDI. 

The EA index is based on the environmental exposure classes taken from EN206 [26]. The higher environmental 

aggressiveness affects the structure, the higher the EA index value will be. For example, for the concrete inside buildings 

with very low air humidity, there is no risk of corrosion or attack. For this reason, the EA index value of 0 is assigned 

to this class. If the concrete structures expose to tidal, splash and spray zones in parts of marine, then there is an extremely 

high corrosion risk due to the presence of chlorides accompanied with dry/wet cycles. For this reason, the EA index 

value is assigned as 4. More detailed discussion of the rationales can be found in [5]. 

At the present time, calculation of SCI is made by averaging the EA and CDI values as follows: 

2

CDIEA
SCI


  (2) 

An alternative approach to assessing corrosion damage levels has been proposed by Fazal [6] and Yehia [7], in which 

three aspects of structure conditions are incorporated in the assessment matrix: delamination, crack width, and crack 

depth. Quantitative criteria adopted in [6-7] for making decisions are presented in Table 2. 

Table 2. Quantitative criteria for delamination, crack width, and crack depth 

Indicators Different levels 

Percentage of delamination 0%-25% 25%-70% 

Crack width (mm) <0.08 0.08-0.6 >0.6 

Crack depth (mm) 0-152 152-300 

It was pointed out in [27] that different structure elements may require different attention level in assessing corrosion 

damage levels. Consequently, MVF was introduced. Table 3 provides suggested values for MVF for different types of 

structural elements. 

Table 3. MVF rating 

 1 2 3 4 

MVF Steel Reinforced Concrete Precast Concrete and other material Pre-stressed concrete 

3. Fuzzy Theory Applied to Calculation of CDI 

3.1. Corrosion Indicators 

In this paper, the corrosion indicators adopted in [5, 6] and additional indicators from [28] to make it comprehensive 

and applicable to practiced usage. As a result, a total of nine corrosion indictors, summarized in Table 4, are used as 

important corrosion indicators. 
Table 4. Corrosion indicators 

Corrosion indicators 

Chloride level 

The total percentage of delamination (%) 

Cracking width due to corrosion (mm) 

Cracking depth (mm) 

Cracking area (%) (*) 

Bar exposed (%) 

Bar section loss (%) 

Resistivity (Ω m) 

Corrosion rate of main reinforcement (𝜇𝐴/𝑐𝑚2) 

Note: Base on the test technology you can choose some of them to calculate the CDI; 

(*) were added based ODOT’s inspection manual 
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3.2. Fuzzy Theory Applied To Calculation Of CDI 

The steps involved in developing fuzzy theory based method are as follows: 1) Determine the corrosion indicators 

set-U; 2) Determine the evaluation (comments) set-V; 3) Determine the weight factor of each corrosion indictor; 4) 

Establish the fuzzy evaluation matrix-R-from U to V, for which all the items are obtained from the membership function 

of each indicator; 5) Obtain the results of evaluation; 6) Obtain the conclusion of judgment. 

3.3. Building Membership Functions 

The most important step of utilizing the Fuzzy theory is to determine the membership function. Ideally, the process 

of the determination of membership function should be objective. However, since different experts or practitioners may 
have different opinions; therefore, certain subjectivity is still needed.  

The value in the range [0, 1], known as membership degree, represents the relationship of the element and the fuzzy 

set. If membership degree is close to 0, then it indicates that the possibility of that element belongs to the fuzzy set is 

low. If membership degree is close to 1, then it indicates that the possibility of element belonging to the fuzzy set is 

high. 

Common membership functions may exhibit different shape, principal value interval, and symmetrical 

characteristics, etc. Zhao and Bose [29] compared the effects of different membership functions and concluded that the 

triangular membership function is the easiest function type for implementation, while the trapezoidal membership 

function is very close to triangular membership function. In this paper, nine corrosion indicators are adopted; the two 

critical points are 0, 1, and the fuzziest point is 0.5. Therefore, these three points can be connected with a straight line. 

The transitional zone (principal value interval) should not be a value but a region. Based on the above discussions, the 

trapezoidal distribution fuzzy membership function, presented in Table 5, is used to determine the membership degree 
matrix in this paper. 

Table 5. Trapezoidal membership functions 

 Deflection Minor Type Middle Type Deflection Large Type 

Trapezoidal 

distribution 
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The detailed mathematical expressions for each of the four levels adopted in this paper are shown below: 

1) The membership function of x  in level I: 
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2) The membership function of x  in level II: 
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3) The membership function of x  in level III: 
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4) The membership function of x  in level IV: 





















xc

cxc
cc

cx

cx

xrij

6

65

56

5

5

1

0

)(  (6) 

Where:𝑥 is the corrosion indicators; 𝑐𝑖 is the corresponding corrosion level; 𝑟𝑖𝑗(𝑥) is the membership degree of the 

index 𝑖 corresponding to level 𝑗. 

Using the mathematical expressions given above, the membership degree function figures of the nine corrosion 

indicators (Table 4) can be obtained. The rationale for the membership functions is discussed herein. The upper and 

lower critical values of the nine indicators are selected based on interpretation of various literature and the related 

standards in North America. 

1) The chloride concentration indicator 

ACI 222R [30] and ACI 201.2R-08 [10] provide the chloride limit value (0.15%-average value) of the chloride 

concentration by the mass of cement for concrete structure with testing the sample gotten by core drilling. But the direct 

data gotten from field tests is the percent by the mass of concrete. Therefore, the chloride limit value of ACI 222R [30] 

and ACI 201.2R-08 [10] is divided by 7 (a conversion coefficient between the percent chloride by the mass of concrete 

and the mass of cement), resulting in about 0.02%. The membership function of Chloride concentration is shown in 

Figure 2a. 

2) Delamination indicator 

Delamination is an act of splitting or separating a laminate or solid into layers. Based on [5, 6], different researchers 

have considered different critical values and different methods to divide the concrete delamination condition into four 

levels. According to [28], the critical condition for concrete delamination condition is 30% of the component area. The 

membership function of delamination is shown in Figure 2b. 

3) Cracking width indicator 

AASHTO [6] provides the crack width of 0.017 in (0.43 mm) as a critical value requiring attention. A more 

conservative value of 0.3 mm suggested in [1] is selected in this paper. The value of crack width is the average value 

per crack after measuring all the cracks of the critical evaluation area. The membership function of crack width is shown 

in Figure 2c. 

4) Crack depth indicator 

The crack depth is used to determine the suitable repair method (Table 2); therefore, crack depth is included as one 

of the indicators. Our selection of 300 mm as a critical value is based on gathering of experts’ opinion from Department 
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of Transportation, which is also the average value similar as crack width. The membership function of crack depth is 

shown in Figure 2d. 

5) Crack area indicator 

The crack area [28] can be measured as the total area contains all the cracks appearing in surface of the structure 

components. The critical value is when the total crack area has reached 30% of the total components area. The 

membership function of crack area is shown in Figure 2e. 

6) Reinforcement exposure indicator 

The condition of primary bars exposure should be considered during field inspection and condition rating work. It is 

stated in [28] that if 30% of all the primary bars were exposed in one transverse section, that would be considered as the 

critical value. The membership function of bar exposure is shown in Figure 2f. 

7) Reinforcement section loss indicator 

It was pointed out that the critical condition for the section loss of the reinforcing bars is 10% of the original section 

area [5, 28]. The membership function of bar section loss is shown in Figure 2g. 

8) Concrete resistivity indicator 

It was mentioned that the concrete resistivity provides information about the potential for corrosion [5, 31], in which 

100 Ω. 𝑚 is considered as the critical value. The membership function of concrete resistivity is shown in Figure 2h. 

9) Corrosion rate indicator 

Non-destructive testing evaluation using the galvanostatic plus measurement is a useful and effective method to 

obtain the information of corrosion rate [7, 31-32]. A critical value of 1 
𝜇𝐴

𝑐𝑚2⁄   [1] is established to build the 

membership function, which is shown in Figure 2i. 
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Figure 2. Chloride concentration membership degree function 

4. Steps of Fuzzy-AHP Method to Determine Corrosion Damage Index (CDI) 

The calculation steps of determining the corrosion damage level based on CDI using fuzzy-AHP mathematics are 

detailed herein and the flowchart is shown in Figure 3: 

1) Determine the evaluation indicator set 

The corrosion indicator set is identified in Table 4: 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8, 𝑢9}, where to represent the nine 

corrosion indicators, respectively. 

2) Determine the assessment level set 

The assessment level set is: 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, where to represent the level I, level II, level III and level IV, 

respectively, given in Figure 2a to 2i. 

3) Determine the weight factors of nine corrosion indicators 

The AHP method is used here to determine the weight factors of nine corrosion indicators                                                        

𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9} , where A is the weight factor set: to represent the weight factors related to the nine 

corrosion indicators. 

Rather than prescribing a ‘correct’ decision, the AHP method helps decision makers find one that best suits their goal 

and their understanding of the problem. The basic principle of AHP is to make the complex decision making problem 

hierarchically, then rank the degree of association of each criterion relative to the others, using the scale of association 

from 1 to 9 as shown in Table 6. 

Table 6. The scale of comparison decision matrix scale and their meanings 

Scale Meaning 

1 Equal importance 

3 Moderate importance, former moderately important than latter 

5 Strong importance, former important than latter 

7 Very strong importance, former very strongly important than latter 

9 Extreme importance, former extremely important than latter 

2, 4, 6, 8 Intermediate values, the median value of above judgment:1-3, 3-5, 5-7, 7-9 

Reciprocal 
If the ratio of the importance between element 𝑖 and element 𝑗 is 𝑏𝑖𝑗 (any value between 1-9), the ratio 

of the importance between element 𝑗 and element 𝑖 is 𝑏𝑗𝑖 =
1

𝑏𝑖𝑗
 

Notes: ‘former’ and ‘latter’ means there are two criteria which will compare with each other, one of them should be chosen as basic one-former, 

another is the comparative-latter 

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5 6 7 8 9 10

M
e
m

b
e
rs

h
ip

 d
e
g

re
e

Section loss percentage of reinforcement (%)

IV levelIII levelII levelI level

0

0.2

0.4

0.6

0.8

1

100 280 460 640 820 1000

M
em

b
er

sh
ip

d
e
g

r
e
e

Concete resistivity 

I levelII levelIII levelIV level

0

0.2

0.4

0.6

0.8

1

0.1 0.28 0.46 0.64 0.82 1

M
e
m

b
e
rs

h
ip

 d
e
g

re
e

Corrosion rate (μA/cm2)    

IV levelIII levelII levelI level

(g) (h) 

(i) 

(Ω.m) 



Civil Engineering Journal         Vol. 4, No. 4, April, 2018 

850 

 

4) Determine the fuzzy evaluation matrix 

For each objective evaluation goal, the relationship between the evaluation elements and the evaluation level, i.e., 

the fuzzy relation between 𝑈 and 𝑉 can be represented by the fuzzy evaluation matrix, 𝑅 as follows: 





































94939291

84838281

74737271

64636261

54535251

44434241

34333231

24232221

14131211

rrrr

rrrr

rrrr

rrrr

rrrr

rrrr

rrrr

rrrr

rrrr

R  (7) 

Where 𝑟𝑖𝑗(𝑖 = 1, 2, … , 4; 𝑗 = 1, 2, … , 9) represent the membership degree of objective evaluation goal belonging to 

level iv  based on the value of indicator element 𝑢𝑖. All the membership functions are proposed previously from Figure 

2a to 2i. 

5) Calculate the comprehensive evaluation result 

The results of evaluation can be gotten through multiplying the vector of the index weight-𝐴 and the fuzzy evaluation 

matrix-𝑅. The equation is as follows: 
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Wheremeans fuzzy complex operations calculation, Table 7 lists four common fuzzy complex operations calculation 

types, the fourth type will be used in this paper; 𝐴 is the weight factor set decided by AHP method in step 3; 𝑅 is the 

fuzzy evaluation matrix determined in step 4. 

Table 7. Common types of fuzzy complex operations calculation 

Types Operator Meaning 

I  ,   baba ,min   baba ,max  

II  ,  baba    baba ,max  

III  ,   baba ,min   1,min baba   

IV  ,  baba    1,min baba   

6) Using the asymmetric nearness degree method 

Because the fuzzy evaluation vector 𝐵 calculated by the typical fuzzy theory method is a fuzzy subset, which is a set 

of membership values corresponding to assessment levels. The vector shows the distribution of the value to all the 

assessment levels, with each value in the evaluation result vector representing the membership degree belonging to each 

assessment level. The nearness degree theory [25] will be used to re-analyze the vector 𝐵 and make the structure’s 

corrosion damage level more clear to decide the value of CDI. 



Civil Engineering Journal         Vol. 4, No. 4, April, 2018 

851 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The flowchart of fuzzy-AHP method 

5. Final Simple Corrosion Index Calculation 

In this paper, calculation of SCI includes consideration of CDI, ECF and MVF. Inclusion of ECF and MVF is to 

account for the influence exerted by these two factors on the future progression of corrosion conditions. However, ECF 

and MVF are qualitative and subjective indicators that are different from CDI’s quantitative indicators; therefore, the 

fuzzy theory cannot be used to deal with ECF and MVF. Furthermore, the importance of ECF and MVF is less when 

compared with CDI to decide the current corrosion damage level of the structure. In this paper, the classification of 

environment exposure and the material vulnerability are derived from those mentioned in [5, 27]. Figure 4 depicts SCI 

calculation scheme. 

 
Figure 4. The simplified corrosion index 

5.1. Importance of CDI, ECF and MVF 

Based on the procedures of AHP method, the pair-comparison matrices for CDI, ECF and MVF are presented. CDI 

is much more important influence indicator than ECF and MVF to decide the SCI value, so the scores of 5 and 7 are 

applied. ECF is moderately important compared with MVF, when the score of 3 is applied. The final pair-comparison 

matrix and the weight factor result are shown in Table 8. 

Table 8. Pairwise comparison of CDI, ECF and MVE 

Indicators CDI ECF MVF Importance 

CDI 1 5 7 0.7235 

ECF 1/5 1 3 0.1932 

MVF 1/7 1/3 1 0.0833 

The consistency of pairwise comparison matrix should be tested, but perfect consistency rarely occurs in practice. In 

the AHP, the pairwise comparisons in a judgment matrix are considered to be adequately consistent if the corresponding 

consistency ratio (CR) is less than 10% according to Saaty [21]. The CR coefficient is calculated as follows. Firstly, the 

consistency index (CI) needs to be estimated. This is done by adding the columns in the judgment matrix and multiply 

the resulting vector by the vector of priorities (i.e., the approximated eigenvector) obtained earlier. This yields an 

approximation of the maximum eigenvalue, denoted by 𝜆𝑚𝑎𝑥. Then, the CI value is calculated by using the formula: 

𝐶𝐼 = (𝜆𝑚𝑎𝑥 − 𝑛)/(𝑛 − 1) (9) 

Where 𝑛 is the dimension of pairwise comparison matrix.  

Next, the consistency ratio CR is obtained by dividing the CI value by the Random Consistency index (RCI) as given 

in Table 9. 

𝐶𝑅 =
𝐶𝐼

𝑅𝐶𝐼
< 0.1 (10) 

Calculate the comprehensive evaluation result- 𝐵 

Determine the evaluation 

indicator set-𝑈 

Determine the assessment level 

set- 𝑉 
Determine the weight factors- 𝐴 

Determine the fuzzy evaluation matrix-𝑅 

Simplified Corrosion Index 

SCI (0-4) 

Corrosion Damage Index 

CDI (1-4) 

Environmental Change Factor 

ECF (0-4) 

Material Vulnerability Factor 

MVF (1-4) 
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Consistency of the pair-comparison, 𝜆𝑚𝑎𝑥 = 3.0649, 𝐶𝐼 = (𝜆𝑚𝑎𝑥 − 3)/2 = 0.03245, 𝐶𝑅 = 𝐶𝐼/𝑅𝐶𝐼 = 0.056 <
0.1, so the consistency is satisfied. 

Table 9. RCI value for different values of n 

n 1 2 3 4 5 6 7 8 9 10 

RCI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.46 1.49 

The weight factor can be calculated with the characteristic root method indicated in [21] as follows: 
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(11) 

Where 𝑎𝑖 is the weight factor corresponding to each corrosion indicator introduced in Table 4; 𝑏𝑖𝑗 is the corresponding 

element in pairwise comparison matrix, meaning the relative weight between attribute𝑖 as compared to attribute 𝑗, 𝑛 is 
the dimension of pairwise comparison matrix. 

5.2. Proposed Formula Used to Calculate SCI  

After the values of CDI, ECF and MVF were obtained, the final SCI is calculated by using the formula: 

MVFwECFwCDIwSCI *** 321  ,        4,0SCI                                          (12) 

Where 
1w ,

2w  and 3w  are the weight factors of CDI, ECF and MVF, respectively. 

As mentioned in the section on background in this paper, the corrosion process is classified into four levels 

corresponding to the following criteria: 0-1-No corrosion; 1-2-Low corrosion; 2-3-Moderate corrosion; 3-4-High 

corrosion. 

6. Numerical Example 

Consider a reinforced concrete bridge deck, where the environment exposure is assumed to be the marine 

environment, which means the value of EA is 4. An artificial set of inspection data is as follows: chloride concentration 

is 0.01%, delamination area is 15.6% of total area, crack width is 0.156 mm, crack depth is 45 mm, crack area is 13.5%, 

bar exposed is 9%, bar section loss is 6.5%, concrete resistivity is 570 Ω.m, and corrosion rate is 0.57 𝜇𝐴/𝑐𝑚2. Using 

this set of data, the numerical computational procedure is illustrated as follows. 

1) AHP method to decide the weight factors of nine indicators 

The 1 to 9 scales method in Table 6 is used to determine the relative importance between each pair of corrosion 

indicators. For example, corrosion rate and chloride concentration should be direct and very important indicator to check 

the structure corrosion damage level. Therefore, the importance of these two indicators should be equal and the score 1 

is applied. Although the concrete resistivity correlates with the corrosion rate, it is not the determining factor to define 

or prevent a potential damage to the structure [5]. The concrete does influence the future corrosion damage. Therefore, 

chloride concentration could be given a score of 6 relative to concrete resistivity. Other indicators, like delamination 

area, crack condition, and rebar’s condition, should be more important than concrete resistivity indicator, but less 

important than corrosion rate and chloride concentration. The score of 2 is given when chloride concentration is 

compared with bar exposure area and bar section loss. The score of 4 is given when chloride concentration is compared 

with crack width, crack depth, and crack area. The chloride concentration is important when compared with delamination 

area. Thus, a score of 6 is assigned. Using the same procedure and method of reasoning, all elements in the pairwise 

comparison matrix, 𝑅𝐴 can be determined based on the relative importance between each pair of indicators. 
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The consistency of matrix (13) can be checked as following: 

2077.9max  , 0260.0CI , 1.0018.0 CR  

It appears that the consistency of the pairwise comparison matrix is satisfactory, which means that the assigned 

relative importance of each pair of indicators is reasonable. 

The result after calculation is given below:  

  }.1976.0,0319.0,1532.0,1532.0,0666.0,0666.0,0666.0,0278.0,2364.0{
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Where 𝐴 is the weight factor set, which should satisfy 1
9
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2) Determine the fuzzy evaluation matrix 

Using the example inspection data and trapezoidal membership functions, the fuzzy evaluation matrix R introduced 

in Section 4 can be determined. All the values are calculated by using Figure 1 for each indicator and they are 

summarized in Table 10. 

Table 10. Fuzzy Evaluation Matrix 

Indicators 
𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 

Level I Level II Level III Level IV 

𝑢1 chloride concentration 0 0.5 0.5 0 

𝑢2 delamination 0 0.4 0.6 0 

𝑢3 crack width 0 0.4 0.6 0 

𝑢4 crack depth 0.25 0.75 0 0 

𝑢5 crack area 0 0.75 0.25 0 

𝑢6 reinforcement exposed 0 1 0 0 

𝑢7 reinforcement section loss 0 0 1 0 

𝑢8 concrete resistivity 0 0.611 0.389 0 

𝑢9 corrosion rate 0 0.389 0.611 0 

3) Calculate the evaluation result using Equation 8: 

 0,4779.0,5055.0,0167.0 RAB  

4) Apply asymmetric nearness degree method to analyse the evaluation vector 𝐵 

The procedures involved are detailed herein: 

First, the vector B  should be standardized using the following equations: 

 ,...,,,, 2211  jjjjj

j cdicdicdicdicdiB    (14) 

So, 

 0,4779.0,5055.0,0167.01 B  
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 0,4779.0,0167.0,5055.02 B  

 0,0167.0,5055.0,4779.03 B  

 0167.0,5055.0,4779.0,04 B  

For any fuzzy evaluation vector-𝐵, the nearness degree should be calculated with the optimization object. For 

example, the nearness degree of 𝑁(𝐵1, 𝐷1) of 𝐵1 and 𝐷1 = {1 0 0 … 0}  can be checked by the following equation: 

𝑁(𝐵1, 𝐷1) = 1 −
1

𝑚(𝑚+1)
∑ |𝑏𝐵

𝑝(𝑣𝑘) − 𝑑𝐷
𝑝 (𝑣𝑘)|𝑘𝑚

𝑘=1  , P=1,2,… k=1,2,3,4 (15) 

Where 𝐷1 = {1 0 0 … 0} is called the optimized object of the assessment level 𝒗𝟏 ; 𝐷1 = {0 … 1 … 0} is called the 

optimized object of 𝑣𝑗 for universal type; 𝑏𝐵
𝑝

(𝑣𝑘) is the membership degree of B1’s item belonging to 𝑣𝑘, i.e., the 𝑘𝑡ℎ 

item of vector B1; 𝑑𝐷
𝑝

(𝑣𝑘) is the 𝑘𝑡ℎ item of vector D1; m is the dimension of vector B1; P is suitable real number, which 

is chosen as 1. 

Because the vector 𝐵 has been standardized by Equation 15, the final nearness degree of the vector B with each 

corrosion damage level 𝑣𝑗 can be obtained as follows:  

   1,, DBNDBN j

j   (16) 

Then 

  8286.0, 1 DBN  

    9019.0,, 1

2

2  DBNDBN  

    9200.0,, 1

3

3  DBNDBN  

    8238.0,, 1

4

4  DBNDBN  

Therefore, 𝑁(𝐵, 𝐷𝑗) = max
𝑗𝜖𝑚

|𝑁(𝐵, 𝐷𝑗)|  means the evaluation result relatively belongs to level 𝑣𝑗. Based on above  

results of calculation, 𝑁(𝐵, 𝐷3) is the largest one; therefore, the final corrosion damage assessment level is level III, 

which means the value of CDI is 3. If the judgment is decided on the result of fuzzy set B directly, the value of CDI is 

2. 

5) Calculate the final corrosion index result-𝑆𝐶𝐼 

Based on environment expose and the material, the ECF and MVF values for this bridge structure are 4 and 2, 

respectively. The value of CDI obtained in Step 5 is 3 and the weight of ECF, MVF and CDI is shown in the last section. 

Calculating the evaluation result by Equation 12: 

1099.32*0833.04*1932.03*7235.0*** 321  MVFwECFwCDIwSCI  

So, the final condition for this bridge structure is considered to have a classification of high corrosion damage, 

therefore intervention process is needed urgently. 

7. Conclusion 

The Fuzzy theory and AHP were utilized in this paper to develop a useful tool for determining the corrosion damage 

condition of a reinforced concrete bridge superstructure based on corrosion indicators with fuzzy boundary value 

between different levels. AHP method was used to help determine weight factors for different indicators relative to the 

determination of the final corrosion condition. Using the multiple indicators to identify the corrosion damage level is in 

itself fuzzy. Combining the AHP theory into the fuzzy comprehensive evaluation method was demonstrated to be a very 

effective method for the decision-maker to insert his/her judgment based on the experiences and preferences. It should 

be pointed out that experiences and opinions of experts are still needed in the use of AHP method to determine the 

weight factors; therefore, it can reflect expert’s or agencies’ practice preferences. However, AHP method can reduce the 

influence of certain expert’s mistakes in the judgment by using pairwise comparison method. After calculating the 

evaluation vector with the procedures of the Fuzzy-AHP method, which is still a fuzzy set, the asymmetric nearness 

degree method is used to re-analyze the fuzzy evaluation vector. Then, the final and more accurate CDI value can be 

obtained. The SCI can be calculated by combining the weighted ECF, MVF and CDI, the quantitative corrosion 

condition assessment of a reinforced concrete bridge superstructure. An illustrative numerical example is presented to 

show the different judgment results of CDI based on the same inspection data before and after using the asymmetric 
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nearness degree method. The final value of SCI for the numerical example shows that the bridge structure is in high 

corrosion condition. 

The key problem of using the fuzzy method to solve the diagnostic problem is the selection of the membership 

functions. The proposed Fuzzy-AHP, together with the asymmetric nearness degree method, shows promise in dealing 

with decision making issues pertaining to corrosion damage level assessment. 
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