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Abstract 

The problem of soil against liquefaction during earthquakes is devastating geotechnical phenomenon. Soil against 

liquefaction is generally occurred in loose cohesionless saturated soil when pore water pressure increases suddenly due to 

earthquakes and shear strength of the soil decreases to zero. Yangon area has been chosen as the study area because it is 

the most populated and largest city in Myanmar and located in low to medium seismicity region. In this purpose, the 

liquefaction potential map have been prepared for site planners and decision makers to prevent loss of lives. Geographic 

Information System (GIS) is very useful in decision making about the area subjected to liquefaction. ArcGIS software is 

used to develop the liquefaction potential maps of the selected area in Yangon City. To perform in this study, the field 

borehole data for groundwater table, Standard penetration test (SPT), blow counts, dry density, wet density and fine content, 

etc. have been collected from the downtown area of this city. Firstly, the safety factor of soil liquefaction is computed by 

using NCEER (National Center of Earthquake Engineering Research, 1997) Method based on cyclic resistance ratio and 

cyclic stress ratio and then liquefaction Potential Index (LPI) values are determined using Luna and Frost Method, 1998. 

Finally, liquefaction potential maps are developed corresponding to the ground motions for annual probability of 

exceedance equal to 1%, 2% and 10% in 50 years. 

Keywords: Liquefaction Potential Index; Geographic Information System (GIS); Yangon City; Liquefaction Potential Map; Earthquake; 

SPT Data. 

 

1. Introduction 

In the past decades, a huge amount of subsurface information has been incorporated in urban and rural area in many 

countries for various purposes such as disaster mitigation, infrastructure development and construction of high rise 

building. In the urban area, the underground condition below the Earth’s surface operates the cost and feasibility of the 

construction projects from the aspects of physical properties of the foundation soil, depth of groundwater, and 

susceptibility of subsoil to liquefaction etc. Geotechnical database plays a significant role to investigate regional subsoil 

condition [4]. Sub-surface information is presented in various forms such as borehole logs, soil cross sections, soil test 

data sheets, geotechnical investigation reports, topographic maps, geological maps, and underground structure details. 

Seismic soil liquefaction continues to be a challenging problem, and attracts considerable attention from researchers all 

around the world. Liquefaction is one of the main effects of an earthquake that is responsibility to structural failure and 

damage to roads, pipelines and infrastructures [2]. It is one of the most serious geotechnical problems of public concern. 

For the study of subsurface geology, the generation of a geological database is important which can be done by the 

collection of borehole data. 
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 The liquefaction potential mapping is represented the process of identifying the changes in liquefaction hazard 

potential across an area and the process of evaluation both the response of soil layer due to the earthquake and the effect 

of variation in earthquake properties on the ground surface. The map of liquefaction potential identifies the areas with 

significant probabilities of severe disaster and ground disturbance during a seismic event. This map presents basic 

information concerning ground properties to assist in the design of the structure. Liquefaction potential map is very 

important for developing seismic risk analysis and mitigation strategy in densely populated urban area. Liquefaction 

potential map is a useful tool for determining the areas where specific investigations for liquefaction hazards are needed 

to project development. 

The majority of liquefaction studies have concentrated on relatively clean sands. The soil liquefaction has been 

explored on soils within the grain size range of very silty sand to silt with or without some clay content. These silty soils 

are frequently encountered in engineering practice, and there is an abundance of evidence to show that they can be 

susceptible to liquefaction. As designers of earthquake resistant infrastructure, often in silty soil environments, engineers 

need to know which silty soils are susceptible to liquefaction. Soil liquefaction due to earthquakes may increase in 

damage to buildings, bridge and other infrastructures etc. Moreover, earthquakes induced liquefaction phenomena have 

been happened in many parts of the world. Then, many researchers have modified, improved, calibrated and validated 

the methods of liquefaction susceptibility analysis and mapping. 

Yangon City is located closely to the seismically active zone. The downtown parts of the City are covered by the 

valley-filled deposit and Younger Alluvium soil. Most of the soil in Yangon is clay and silty soil. It is needed to 

investigate soil against liquefaction. In the study, the safety factor of soil against liquefaction is calculated by using 

NCEER method based on SPT data because it is used to predict the occurrence of liquefaction at each location as well 

as the resulting liquefied thickness. Field standard penetration test (SPT) data from about 67 numbers of boreholes in 

the Yangon selected area with different earthquake moment magnitudes (Mw) is used for the evaluation of liquefaction 

potential. Soil layers with FS greater than 1.0 and FS less than or equal 1.0 are defined as non-liquefiable and liquefiable 

layers. Despite showing the liquefaction potential of a soil layer at a particular depth in the subsurface, FS does not show 

the degree of liquefaction severity at a liquefaction-prone site. Liquefaction potential index (LPI) values corresponding 

to the magnitude of the peak horizontal ground acceleration proposed by Luna and Frost Method (1998) provide an 

integration of liquefaction potential over the depth of soil profile and predict the performance of the whole soil column 

as opposed to a single soil layer at particular depth. Luna and Frost categorized the sites with LPI = 0 as not likely to 

liquefy and categorized the sites with 0 < LPI ≤ 5, 5 < LPI ≤15 and LPI > 15 as having minor, moderate and major 

liquefaction susceptibility, respectively. Liquefaction potential map based on LPI values are prepared with different 

earthquake for 1 %, 2% and 10% probabilities of exceedance in 50 years in Yangon selected area. 

The objective of liquefaction potential map is to evaluate liquefaction potentials at unsampled locations where 

borehole data are not available based on the measured liquefaction potentials at selected borehole locations. Soil 

distribution map is an important issue for calculation of soil liquefaction. In the study, an attempt has been made to 

prepare soil distribution and liquefaction potential map with the help of the available borehole data in Yangon, Myanmar. 

1.1. Background Problem 

Geographically, a larger part of Myanmar lies in the southern part of the Himalaya and the eastern margin of the 

Indian Ocean, hence exposed to bigger earthquakes. As Myanmar is an earthquake prone country, it has two important 

tectonic features and earthquake sources, one within Myanmar and the other in her neighborhood to the West. As the 

earthquake sources, the major active faults which have been seismically very hazardous for Myanmar are Sagaing fault, 

Kyaukkyan fault, Nan Pon fault, Kabaw fault, Myauk-U fault, Dawei fault, Gwegyo Thrust, and some major thrusts in 

north-west Myanmar. In recent times, Myanmar has experienced large magnitude earthquakes, related hazards and 

frequent landslide phenomena. 

Building collapse is a major hazard. The severe damages of the large magnitude earthquakes might affect mostly on 

the rural house since they are not designed by structural engineers, even in the city where the old buildings existed. The 

population density tremendously increases in major cities; unfortunately, these large cities lie near or quite close to the 

major active faults in Myanmar (for an instance, the cities of Yangon, Bago, Taungoo, Napyitaw, Pyinmana, Kyaukse, 

Mandalay, and Myitkyina stand along the Sagaing Fault and Taunggyi City is near the Kyaukkyan Fault). In 17 

December 1927, Yangon was hit a six-grade. The Bago (Pegu) earthquake (7.3 RS) of 5 May 1930, which caused 
widespread destruction of the town, is considered as a devastating disaster by Chhibber (1934). It killed approximately 

500 people in Bago and 50 in Yangon that is situated at some 30 miles southwest of the epicenter – 30 miles south of 

Bago. The last record of the earthquake in Yangon had been struck M = 5.7, 1978. The other significant earthquakes in 

Yangon had been occurred in September 10, 1927 and December 17, 1927. These events also resulted in a certain 

amount of damage in Yangon. Some of the building in Yangon has the problems of the deformation of the foundation 

into the soil. The problem is the cause of soil liquefaction or cyclic softening. The historical and seismic records show 

that in addition to some major historical earthquakes in the distant past, there had been at least 17 large earthquakes with 

M = 7.0 within the territory of Myanmar in the past 170 years. The recorded strong earthquakes in Myanmar are shown 

in Figure 1. 
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Figure 1. Significant of earthquake in Myanmar 

 

Figure 2. Liquefaction potential map of Yangon City area 

In Yangon area at depth 6 meter, the liquefaction potential map associated with moment magnitude (Mw = 7) and 

peak ground acceleration (a = 0.2 g) was proposed by Htun, 2014 as shown in Figure 2. From this map, it is found that 

the thirty-six boreholes were considered and liquefaction hazards were categorized base on LPI values. i.e. none for LPI 

= 0, low for 0 < LPI ≤ 2 , moderate for 2 < LPI ≤ 5, high for 5 < LPI ≤ 15 and very high LPI > 15 determined by Sonmez 

Method, 2003. The liquefaction map was only suitable for shallow foundation in Yangon City area. To be upgraded the 

liquefaction Potential map for downtown area in Yangon, Myanmar, development of liquefaction potential and soil 

distribution maps are presented in the study. 

1.2. Geology and Geomorphology 

Yangon is a financial and populated city in Myanmar. It is located between Latitude 16.8861º N and Longitude 

96.1951º E and 34 km from the sea in the coastal area. The Alluvial deposits (Pleistocene to Recent), the non-marine 

fluviatile sediments of Irrawaddy formation (Pliocene) and hard, massive sandstone of Pegu series (early-late Miocene) 

are mostly covered the Yangon area. Alluvial deposits are composed of gravel, clay, silts, sands and laterite which lie 
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upon the eroded surface of the Irrawaddy formation at 3-4.6 m above mean sea level (MSL) [10]. The soft rock in 

Yangon comprise of sandstone, shale, limestone and conglomerate. Yangon covers an area of 598.8 km2 having a 

population of around six million people. Many buildings in ancient parts of the city are non-engineered structures. Most 

of the buildings are tall buildings in downtown area, Yangon. There are six townships in downtown parts of Yangon 

City in this study. The geological map of the Yangon city is shown in Figure 3. 

Yangon region is tectonically bounded by the Indian-Burma Plates subduction in the west, Sagaing fault in the east, 

West Bago Yoma fault in the north, Kyaukkyan fault in the north-east, and the Andaman rift zone in the south. Yangon 

stands along the Sagaing Fault. The Bago earthquake, (7.3 RS) of 5 May 1930, is killed approximately 500 people in 

Bago and 50 in Yangon. Many earthquakes in and around Yangon City are shallow earthquakes related with Sagaing 

fault and Taikkyi fault [10]. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

           Figure 3. Geological map of the greater Yangon 

2. Assessment of Liquefaction Potential Index 

The liquefaction susceptibility analysis and mapping have further been modified, improved, calibrated and validated 

by many researchers such as Kang et al., 2014; Palacios et al., 2014 and others [5-9]. However, the Liquefaction Potential 
Index (LPI) was used to represent the damage potential at each site and then a comparison of the CPT-based strength 

profiles obtained before each of the major aftershocks was performed (J.J. Lees, 2015)[18]. It can be observed from the 

LPI contour maps that a high degree of liquefaction damages is likely to occur at a particular location for higher 

magnitude of earthquake and peak ground acceleration (Debojit Sarker, 2015) [19]. An overview of deterministic and 

probabilistic methods for the evaluation of liquefaction potential was made in Shpresa Gashi, 2015 [20]. 

The Liquefaction potential index (LPI) assesses the severity of liquefaction and calculates the manifestations of 

liquefaction, liquefaction damage or failure potential of liquefaction-prone area (Luna and Frost, 1998). LPI is evaluated 

by taking integration of one minus the liquefaction factors of safety along the entire depth of soil profiles limited to the 

depths ranging from 0 to 20 m below the ground surface at a specific location. The level of liquefaction severity with 

regard to LPI as per Iwasaki et al. (1982) and Luna and Frost (1998) is shown in Table 1. The safety factor against 

liquefaction (FS) and the corresponding liquefaction potential index (LPI) are established by comparing the seismic 

demand expressed in terms of cyclic stress ratio (CSR) to the capacity of liquefaction resistance of the soil expressed in 
terms of cyclic resistance ratio (CRR). 

2.1. Method based on the Standard Penetration Test 

The most comprehensive liquefaction data catalogs are based on Standard Penetration Test (SPT) blow counts. The 

measured SPT blowcount (𝑁𝑆𝑇𝑃) is first normalized for the overburden stress at the depth of the test and corrected to a 

standardized value of (𝑁1)60. Using the recommended correction factors given by Robertson and Fear (1996), the 

corrected SPT blowcount is calculated with [12]: 
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(𝑁1)60 = 𝑁𝑆𝑃𝑇𝐶𝑁𝐶𝐸𝐶𝐵𝐶𝑅𝐶𝑆 (1) 

Where, 𝐶𝐸 is corrected energy ratio (𝐸𝑅). 𝐶𝐵 is the correction factor of borehole diameter, 𝐶𝑅 is correction factor for 

rod length and 𝐶𝑆 is the correction for sampler with or without liner. The correction factor (𝐶𝑁) normalizes the measured 

blowcount to an equivalent value under one atmosphere of effective overburden stress: 

C𝑁 = √
𝑝𝑎

𝜎′𝑣0

 (2) 

Where 𝜎′
𝑣0 is the vertical effective stress at the depth of 𝑁𝑆𝑇𝑃 and 𝑃𝑎 is one atmosphere of pressure.  

The clean-sand equivalent is made based on the fines content of the soil sample: 

clean − sand equivalent (𝑁1)60 = (𝑁1)60 + ∆(𝑁1)60 (3) 

The correction factor is computed with the linear function: 

For 5%FC  ∆(N1)60 = 0.0 

For 35%FC5%                                    ∆(𝑁1)60 = 7 × (𝐹𝐶 − 5) 30⁄  

For 35%FC  ∆(𝑁1)60 = 7.00 

Where FC is the fines content (percent finer than 0.075mm) 

2.2. Cyclic Resistance Ratio 

As a rule of thumb, any soil that has an SPT value higher than 30 will not liquefy. As mentioned earlier, resistance 

to liquefaction of a soil depends on its strength measured by SPT value. Researchers have found that resistance to 

liquefaction of a soil depends on the content of fines as well. The following equation can be used for clean sand [1-6]. 

100 × 𝐶𝑅𝑅𝑀=7.5 =
95

34 − (𝑁1)60

+
(𝑁1)60

1.3
−

1

2
 (4) 

Where 𝐶𝑅𝑅𝑀=7.5 is the cyclic resistance ratio for an 𝑀𝑤 = 7.5 earthquake and (𝑁1)60 is the corrected, clean-sand 

equivalent SPT value. A value of (𝑁1)60> 30 indicates an unliquefied soil with an infinite CRR. 

2.3. Cyclic Stress Ratio 

The representative horizontal shear stress is computed with a simplified equation suggested by Seed and Idriss (1971) 

and expressed in terms of the cyclic stress ratio (CSR) given by Seed et al.( 1985): 

CSR = 0.65
𝑎𝑚𝑎𝑥

𝑔

𝜎𝑣0

𝜎′𝑣0

𝑟𝑑 (5) 

Where g is the acceleration due to gravity (9.81 m/s2), 𝜎𝑣0 is the total vertical overburden stress, and 𝜎′
𝑣0 is the 

effective vertical overburden stress at the depth of interest. The stress reduction coefficient parameter accounts for the 

flexibility of the soil profile, 𝑟𝑑  [7, 22]; 

r𝑑 = 1.0 + 1.6 ∗ 10−6(𝑧4 − 42𝑧3 + 105𝑧2 − 4200𝑧) (6) 

z is the depth below the ground surface in meters. 

𝑀𝑤 can be used to measure the whole spectrum of ground motions. Moment magnitude is defined as a function of 

the seismic moment 𝑀0. This measures the extent of deformation at the earthquake source and can be evaluated as 

follows [3, 24]: 

M0 = 𝐺𝐴∆𝜇 (7) 

Where G is the shear modulus of the material surrounding the fault, A is the fault rupture area and Δ u is the average 

slip between opposite sides of the fault. 𝑀𝑤 is thus given by: 

Mw = 0.67 log M0−10.7 (8) 

Where, 𝑀0 is expressed in ergs. 

Moment magnitude is expected from the Sagaing Fault located near Yangon City. Cornell, et al. (1979) proposed the 

mean of log peak ground acceleration (in units of g) and peak ground acceleration is calculated with the source distance. 
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ln(𝑃𝐺𝐴) = −0.152 + 0.859M𝑤 − 1.803 ln(𝑅 + 25) (9) 

Where, PGA = Peak ground acceleration 

              Mw = Moment magnitude 

               R = Source Distance 

2.4. Factors Affection the liquefaction Susceptibility 

Clays remain non susceptible to liquefaction, although sensitive clays exhibit deformation-softening behavior similar 

to that of liquefied soil (Kramer 1996). Fine-grained soils that satisfy each of the four Chinese criteria (Wang, 1979) 

may be considered susceptible to significant strength loss [11-14]: 

• Fraction finer than 0.005 mm ≤ 15% 

• Liquid Limit (LL) ≤ 35% 

• Natural water content ≥ 0.9LL 

• Liquid Index ≤ 0.75 

When clay is contained in the sand and the cohesion is high, liquefaction does not occur, and if it does, the 

displacement is small. 

Liquefaction susceptibility decreases strongly with increasing depth to the water table (Obermeier, 1995). Normally 

liquefaction is not expected at a place where water table is greater than 10 m. Depth to groundwater table is an important 

issue in the liquefaction evaluation because it is controlled effective normal stress exerted on soil. The cohesionless soil 

in a loose relative density state is susceptible to liquefaction. Uniformly graded nonplastic soil tends to form more 

unstable particle arrangements and is more susceptible to liquefaction than well-graded soil. Human-made deposits (Fill) 

those places without compaction are also very likely to be susceptible to liquefaction (Kramer, 1986) [23]. Although 

building loads are not considered in the liquefaction analysis, the building loads must be included in all liquefaction-

induced settlement, bearing capacity, and stability analyses [25]. 

3. Determination of liquefaction Potential Index 

If the computed cyclic resistance ratio (CRR) of the soil is less than or equal to cyclic stress ratio (CSR) generated 

by the earthquake, liquefaction is assumed to occur at that location. The factor of safety against liquefaction (𝐹𝑆𝐿𝑖𝑞) is 

defined with (Ishihara, 1993) [15-17]; 

FS =
CRR

CSR
 (10) 

That is the soil at the depth of the measured SPT blowcount is predicted to liquefy if FS ≤ 1.0, while FS > 1.0 indicates 

no liquefaction. When the clean-sand equivalent (𝑁1)60 is greater than 30, the soil is considered to be unliquefiable. 

To Liquefaction Potential Index (LPI) is a single-valued parameter to evaluated regional liquefaction potential. LPI 

at a site is computed by integrating the factor of safety (𝐹𝑆𝐿𝑖𝑞) along the soil column. A weighting function is added to 

give more weight to the layers closer to the ground surface [1]. 

For the soil profiles, the Liquefaction Potential Index (LPI) proposed by Luna 1995, Luna and Frost 1998 can be 

expressed as follows [1]: 

LPI = ∑ F𝑖(𝑧) WiHi (11) 

𝐹𝑖  = 1 – FS for FS < 1.0 

𝐹𝑖  = 0 for FS ≥ 1. 

𝑊𝑖= 10 – 0.5z for z ≤ 20 m 

𝑊𝑖 = 0 for z > 20 m 

Where n denotes the number of discretized layers, Hi is the thickness of the discretized layer, and 𝐹𝑖 denotes the 

liquefaction severity for layer which is a function of the FS defined in Equation. Finally, 𝑊𝑖 is the weighting function 

as defined in Equation. 

The categories of liquefaction severity were modified by Luna and Frost (1998) as shown in Table 1. Also, the 

category adopted in this study is proposed, as discussed below [7]. 
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Table 1. Historic liquefaction severity assessed from the liquefaction potential index (LPI) 

LPI Iwasaki et al. (1982) Luna and Frost (1998) 

0 Not likely Little to none 

0 < LPI ≤ 5 Minor Minor 

5 < LPI ≤ 15 - Moderate 

15 < LPI  Severe Major 

The liquefaction potential index (LPI) quantifies the severity of liquefaction and predicts surface manifestations of 

liquefaction, liquefaction damage or failure potential of a liquefaction-prone area. LPI is computed by taking integration 

of one minus the liquefaction factors of safety along the entire depth of soil column limited to the depths ranging from 

0 to 20 m below the ground surface at a specific location.  

Data Acquisition is one of the most difficult parts of the research work. It is time consuming and more personal 

relations are required, in order to contact people in institutions that might have relevant data. Many borehole data 67 

bore logs were collected for the liquefaction analysis. The borehole records contain the geotechnical information such 

as grain size distribution, Atterberg limits, N-values, moisture content, density and unit weight.  

The factor safety of soil for earthquakes with different magnitude is computed by using Equation 4. Factor of safety 

(FS) at different depth of soil profiles is evaluated using different moment magnitudes 7.5, 7.93 and 8.13 Mw with peak 

ground acceleration 0.25 g, 0.36 g and 0.43g. The locations of borehole data are shown in Figure 4. 

Figure 4. Location map of boreholes 

4. Determination of Soil Distribution Map 

Soil investigation plays an important role to know the sub-soil condition. Soil Report is used to classify soil condition 

under the ground by using the results of particle size distribution from the sieve analysis and hydrometer test. There are 

three basic types of soil: sand, silt and clay. But most soils are composed of a combination of the different types. Sand 

is fairly coarse and loose so water is able to drain through it easily. Silt can be thought of as fine sand, and it will hold 

water better than sand. Clay is very fine-grained soil. Soil Distribution Mapping is one of the most geotechnical 

engineering fields. 

The study area has been considered at six townships in Yangon because these townships are located near the river. 

The 67 borehole data in this area are collected for soil classification. Soil distribution maps with different depth are 

proposed by using ArcGIS software in Yangon selected area. The identification of soil types is SM, CL, CH, MH, ML 

and SC by classifying Unified Soil Classification System.  

Latha, Pabedan and Kyauktada Townships are the CH soil type up to 5 m depth. In Latha, Pabedan and Kyauktada 

Townships, it is found SM soil type up to 10 m depth. Most area in Latha, Lanmadaw, Pabedan and Kyauktada 

Townships are covered by SM soil type up to 15 m depth. SM soil type is covered in the downtown parts of Yangon City 

up to 20 m depth. 
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Figure 5. Soil distribution map at 5 m depth 

Figure 6. Soil distribution map at 10 m depth 
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Figure 7. Soil distribution map at 15 m depth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Soil distribution map at 20 m depth 

5. Development of Liquefaction Potential Map 

LPI values of sixty seven (67) borehole locations are evaluated by using NCEER method at a specific location of the 

city. Liquefaction hazards are categorized based on LPI values, i.e. little to none for LPI = 0, minor for 0 < LPI ≤ 5, 

moderate for 5 < LPI ≤ 15 and major for 15 < LPI according to the method proposed by Luna and Frost (1998). 

Liquefaction Potential Maps using ArcGIS software are shown in Figures 9, 10 and 11. The highest LPI values are found 

in the area located near the river. 
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The Yangon City area is evaluated the liquefaction potential of soil. A total of 67 numbers of borehole data in this 

area, both undisturbed and disturbed soil test reports were collected from Yangon City Development Committee and 

professionals working in geotechnical engineering field. This study attempts to calculate factor safety against 

liquefaction (FS) and corresponding liquefaction potential indices (LPI) for the seismic scenario for the city using SPT 

based semiempirical producer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Liquefaction potential map of Downtown Area in Yangon for 1% probability of exceedance in 50 years 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Liquefaction potential map of Downtown Area in Yangon for 2% probability of exceedance in 50 years 
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Figure 11. Liquefaction potential map of Downtown Area in Yangon for 10% probability of exceedance in 50 years 

6. Results and Discussions 

The development of soil liquefaction susceptibility map of Yangon, Myanmar was presented in the sudy. Soil 

liquefaction has occurred in fine to medium sands and silty sand and sands containing low plasticity. The subsurface 

soil of Yangon area up to the depth of 20 m was formed of Pleistocene and Alluvium soil. Most of the soil in the area 

was silty sand as shown in Figure 8. Therefore, it was needed to develop the liquefaction potential maps for these areas.  

The liquefaction potential map of Yangon selected area offered a quantitative approach for mapping liquefaction 

susceptibility. Seismic soil liquefaction potential in terms of LPI was proposed at 67 sites across the area of the Yangon 

City and the maps of LPI values were developed to demonstrate the spatial distribution of liquefaction potential. These 

LPI maps could provide an indication of geographic variability of liquefaction effects and different kinds of probable 

surface manifestations of liquefaction. Spatial distribution of liquefaction potential map for earthquakes of 1%, 2%, and 

10% probability of exceedance in 50 years was quantity presented in form of maps showing the liquefaction potential 

index (LPI). The maps of LPI were proposed for the city to predict the occurrence of damaging liquefaction for the 

earthquake of magnitude 𝑀𝑤 = 7.5, 𝑀𝑤= 7.93 and 𝑀𝑤 = 8.13 of 𝑎𝑚𝑎𝑥 0.25 g, 0.36 g and 0.43 g were shown in Figures 

9, 10, and 11. These maps showed the liquefaction vulnerability at different sites of the city. The liquefaction 

susceptibility for sites with LPI > 15 is very high and the liquefaction is very unlikely at sites with LPI < 5. 

The liquefaction potential map of Yangon selected area was developed for 1 % probability of exceedance in 50 years 

with moment magnitude 𝑀𝑤 = 8.13 and peak ground acceleration, 𝑎𝑚𝑎𝑥 = 0.43 g shown in Figure 9. The liquefaction 

potential map for 2 % probability of exceedance in 50 years with 𝑀𝑤 = 7.93 and 𝑎𝑚𝑎𝑥 = 0.36 g was prepared in Figure 

10. It was shown in Figure 11 that the liquefaction potential map was prepared with 5% probability of exceedance in 50 

years (𝑀𝑤 = 7.5 and 𝑎𝑚𝑎𝑥  = 0.25 g).  

Most of the area namely, Pabedan and Kyauktada Township were major of liquefaction and other townships suffered 

the minor problem of liquefaction with 1 % probability of exceedance in 50 years as shown Figure 9. LPI values of the 

area varied from 2.47 to 16.75 and the liquefaction potentials are categorized from minor to major in the figure. As can 

be seen in Figure 10, Pabedan, Kyauktada, Lanmadaw and Latha Twonships are moderate and major of liquefaction 

susceptibility and Botahtaund and Pazundaung Townships were lower than 5 for 2 % probability of exceedance in 50 

years. The LPI values ranged from 2.09 to 13.69 in the figure and so liquefaction susceptible are categorized from minor 

to moderate. Some area in Pabedan and Kyauktada Townships were moderate of liquefaction susceptibility and other 

townships were minor of liquefaction susceptibility for 10 % probability of exceedance in 50 years shown in Figure 11. 

The LPI values varied from 0 to 4.57 and so liquefaction potentials are categorized from none to minor in the figure. 

The results showed that the thickness of discrete soil layer was very important in liquefaction soil. Luna and Frost 

method is suitable for the evaluation of liquefaction soil with various depths of soil column because of including the 
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thickness of discrete soil layer. It is difficult to collect deep borehole data of soil profile in Yangon City. So this method 

is good to use in Yangon data, Myanmar. The liquefaction potential maps in the study was used to be suitable for deep 

foundation in Yangon. 

7. Conclusion 

The liquefaction potential map indicated that the selected areas were higher to liquefaction susceptibility during 

strong earthquake such as 1% probability of exceedance in 50 years. Liquefaction potential was depended on the 

seismological aspects, such as ground motions levels and earthquake magnitude. Selection of appropriate peak 

horizontal ground acceleration (PGA) for the scenario earthquake can be an uncertainly for future application of the 

method. The liquefaction potential maps were generated for Yangon city to predict the occurrence of damaging 

liquefaction for 1%, 2% and 10% probability of exceedance in 50 years. The previous liquefaction potential map was 

useful for shallow foundation because it was considered 6 m depth of soil profile. The proposed liquefaction potential 

maps had been considered 1%, 2% and 10% probability of exceedance in 50 years and 20 m depth of soil profiles. 

Therefore, the liquefaction potential maps presented in the study would be benefited for the designers and site planners 

to check the vulnerability of the proposed work with respect to the liquefaction of soil at the particular area of Yangon 

City. 
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