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Abstract 

The structural behavior of Segmental Precast Post-tensioned Reinforced Concrete (SPPRC) beams largely depends on the 

behavior of the joints that connect between the segments. In this research, series of static tests were carried out to invest igate 

the behavior of full-scale SPPRC beams with different types of epoxy-glued joint configurations; multi-key joint, single 

key, and plain key joint. The reference specimen was monolithically casted beam and the other specimens were segmental 

beams with five segments for each one. The general theme from the experimental results reflects an approximate similarity 

in the behavior of the four beams with slight differences. Due to the high tensile strength of the used epoxy in comparison 

to concrete, cracks at joints occurred in the concrete cover which was attached to the epoxy mortar. 
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1. Introduction 

A segmental beam can broadly be defined as that beam which consists of a number of small segments fabricated 

either in their final position or in some other location, and then assembled to form the beam. 

Two methods are commonly used in segmental construction, depending on the particular application. The first 

method uses cast-in-place concrete, and the second method uses precast concrete units. Pre-tensioning and post-

tensioning is common practice in the two methods. 

The prestressed segmental construction method for reinforced concrete (RC) bridges is rapid, safe, and economical 

and has been widely used in the construction of long-span RC bridges in different countries around the world. 

Joints between adjacent segments can be dry or epoxy-coated, with or without shear keys. The selection of the joint 

type depends mainly on the prevalent conditions under which the system is to be utilized. 

In this research, series of static tests were carried out to investigate the behavior of full-scale Segmental Precast Post-

tensioned Reinforced Concrete (SPPRC) beams with different types of epoxy-glued joint configurations; multi-key joint, 

single key, and plain key joint. The reference specimen was a monolithically casted beam and the other specimens were 

segmental beams with five segments for each one. 

2. Literature Review 

A description of the construction of a post-tensioned segmental beam and a comparison between the experimental 
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structural behaviors with the theoretical calculations were presented by Tito et al. (2011) [1]. The joints were pasted 

using epoxy, which provided smooth surfaces in addition to sufficient shear strength. Several experimental works have 

been reported on the SPPRC beams [2-10]. 

The openings between the segments and crushing of the concrete compression region were the main reasons for the 

nonlinear behavior of segmental prestressed-concrete beams. Yuan et al. 2015 [6] found that different tendon ratios and 

different load types increased the external tendon stress and the width of joint openings, and also altered the failure 

mechanism. Moreover, the segmental beam with prestressed tendons can achieve satisfied flexural capacity and better 

ductility. 

The difference in strength between on-site cast and precast segmental concrete to accurately evaluate the deflection 
of precast concrete flexural members with joints within the lapped splice had been done by Park et al. 2017 [11]. 

Creep and shrinkage analyses are considered as an essential part of design and analysis for segmental prestressed 

beam, because they affect more on loss of prestressing and displacements [12]. A comparison had been made on some 

concrete creep models to study the creep effect on precast segmental box girder bridge by Xihua et al. 2017 [13]. The 

influence of the segmental construction technology on the creep calculation also had been discussed. 

Finite element analyses for the behavior of segmental concrete beams were presented by some researchers, such as 
Turmoa et al. 2005; Jiang et al. 2013; and Shamass et al. 2014 [14-16]. In segments with closed joints, shear was 

transferred along the entire height of the webs. On the other hand, in the case of open joint segments, the shear flow was 

limited to the compressed zone. The shear capacity predicted by the AASHTO [17] equation diverges from that predicted 

by numerical analysis at high confining pressure, because the contribution of friction in the total shear capacity decreased 

with an increase in confining pressure [16]. 

3. Experimental Work 

3.1. Details of Tested Specimens 

In this work, four simply supported post-tensioned RC beams, named as G1, G2, G3 and G4, were tested up to failure. 

For all tested beams, the overall length was 12000 mm, while the clear span between supports was 11500 mm. The depth 

and width of the cross-section were 600 mm and 300 mm, respectively. A schematic presentation of the tested specimens 

was provided in Figure 1. The first beam, G1, was monolithically casted beam and used as a reference beam. The other 

beams consisted of five segments joined together with an epoxy paste using different types of joint configuration and 

each segment with a length of 2400 mm. The beams were reinforced by six longitudinal deformed bars of 12 mm in 

diameter as illustrated in Figure 1a. The transverse shear reinforcements were used with a diameter of 10 mm and a 

longitudinal spacing of 200 mm for all beams. As shown in Figure 2, the multi-key joint, plain-key joint and single-key 

joint were the different joint configurations that used to join the segments for beams G2, G3 and G4, respectively. Epoxy 

was used as a filling and an adhesive material between segments. The tested beams were post-tensioned with seven 

wires strands passing through a galvanized duct in concrete. Each strand had an outside diameter of 15.2 mm and a 

nominal cross-section of 140 mm2. The initial post-tensioning force was 146 kN (55% of the tendon ultimate strength). 

A grout mixture includes cement; water; and non-shrinkage admixture, was pumped with a continuous operation to fill 

up the galvanized duct and to ensure that all visible slugs of water or inside entrapped air were removed before tightly 

closing of each outlet. The resulting grout provided excellent corrosion protection for the prestressed tendons and 

promoted an effective bond between the prestressed tendons and concrete. 

3.2. Materials Properties 

A ready mixed and normal weight concrete was used for all beams. The concrete produced for the purpose of this 

research consist of ordinary Portland cement Type-I, natural sand with maximum size of 4.75 mm, graded crushed gravel 

with aggregate maximum size of 19 mm, and ordinary potable water used for concrete mixing and curing. The mixing 

proportion [cement: fine aggregate: coarse aggregate] was (1:1.73:2.44) by weight, and the water–cement ratio was 

(0.32). This mix was to obtain a target strength average (40 MPa) for cylindrical compressive strength. 

Six concrete cylinders of 300 mm height and 150 mm in diameter were prepared during the concrete casting for the 

compressive strength and splitting tensile strength tests. The cylinders and the specimens were cured in the laboratory 

under a plastic sheet. The average concrete compressive strength, tensile strength and modulus of elasticity achieved 

after 28 days of curing were 41.3, 4.2 and 3052 MPa, respectively. In addition, tension tests of steel reinforcement were 

also completed according to ASTM A615 [18]. The mechanical properties of the steel reinforcement were listed in Table 

1. All tests were conducted at the National Center of Structural Laboratories and Researches in Iraq. The strands, which 

were used in this experimental work, were made of low relaxation steel with yielding and ultimate strength of 1680 and 

1860 MPa, respectively. In addition, epoxy of type Concresieve-1406 was used as a filling and an adhesive material 

between segments. The compressive strength, flexural strength, and bond strength provided by the manufacturer were 

75 MPa, 25 MPa and 3.0 MPa, respectively. 
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Figure 1. Typical geometry of the tested specimens (dimensions are in mm) (a) cross-section, (b) elevations 

 

 

 

 

 

Figure 2. Details of the key-joints (a) multi-key joint, (b) plain-key joint and (c) single-key joint 

Table 1. Summary of the materials properties for the steel reinforcement 

Nominal diameter 

(mm) 

Weight 

(kg/m) 

As 

(mm2) 

Yield strength 

(MPa) 

Ultimate strength 

(MPa) 

Elongation 

(%) 

10 0.60 76.9 555 633 13.4 

12 0.88 113 557 676 14.4 

3.3. Instrumentation 

Measurements of strains, deflections and loads were recorded to monitor the behavior of the specimens through the 

test. Strains were measured in concrete, top and bottom surfaces at midspans, tendons, and transverse reinforcement ties 

at joint 1. An incremental encoder was used for measuring deflection at mid-spans of the specimens. This encoder was 

a digital signal type with a measurement range up to 600 mm. The applied static load was measured using a load cell 

with a capacity of 2000 kN. In addition, a Data Logger was used for collecting the load value, strains and deflection 

from the testing machine, strain gauges and encoder, respectively. 

3.4. Test Set-Up 

Two 200×150×28 mm elastomeric bearings were used beneath the ends of each beam to simulate the actual supports 

of the bridge piers or abutments. The beams were tested under three-point loading as simply supported beams, as 

illustrated in Figure 3. To avoid any irregularity and to distribute the load uniformly on the top surfaces of concrete, 

layers of epoxy paste with a thickness of 6 mm were used at mid-spans under the pressing jack. The loads were applied 

(a) (b) (c) 

(a) 

G1 

G2 

G3 

G4 
(b) 
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gradually with an incremental rate of 350 N/sec (Figure 4). During each test, there were detections and observations for 

all faces of the specimens by using a wireless microscope with a magnification capacity of 200 times to monitor cracked 

loads, cracks at joints, and crack patterns. 

 

 

 

 

 

 

 

Figure 3. The test set-up (dimensions are in mm) 

 

Figure 4. The loading frame 

4. Tests Results 

 Table 2 summarizes the basic experimental results of the four configurations tested in this study. The table presented 

the initial camber at mid-spans due to the effect of the post-tensioning force, cracked and ultimate loads and modes of 

failure for each beam. 

Table 2. Summary of the experimental findings 

Beam 
Initial Camber 

(mm) 

Pcr 

(kN) 

Pu 

(kN) 
Mode of failure 

G1 10.0 46.4 172.4 Tendons failure 

G2 8.5 43.9 169.5 Tendons failure 

G3 9.0 45.8 161.0 Tendons failure 

G4 9.5 40.6 166.4 concrete crushing  

4.1. Reference Beam (G1) 

The monolithic beam, G1, was tested to provide reference results for comparison with those of segmental beams. 

The beam was loaded gradually and hairline cracks at the concrete bottom surface appear when the applied load 

exceeded the cracked load (46.4 kN). Visible cracking was observed at the bottom surface of the beam as the load 

increased and these cracks propagated and extended toward the compression zone. The elastic behavior of the beam 

extends to a load value of 169.7 kN and then intermittent sounds were heard and the pressure gauge readings slightly 

dropped down. After this loading level, the rate of deflection rapidly increased and a big sound was heard which meant 

the post-tensioned tendons were broken. The beam exhibited a ductile flexural failure after the tendons’ failure due to 

the presence of the longitudinal reinforcement. Figure 5(a) illustrates the crack pattern for the reference beam and shows 
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that the main cracks were concentrated at the middle zone due to the flexural failure. Figure 6(a) shows the failure for 

the tested beam G1. 

4.2. Segmental Multi-Key Beam (G2) 

The load was applied gradually at mid-span and the first crack was detected at the middle segment between joints 2 

and 3 when the load reached 43.9 kN. The first crack became wider and propagated by applying more loads. The number 

and length of cracks increased and transferred to the adjacent segments. The propagation of cracks continued to be 

increased until an abrupt change in the beam deflection due to a sudden failure in the post-tensioned strands. No cracks 

were detected in the first and fourth joints as well as in the end segments; as illustrated in Figure 5(b). The ultimate 

failure load for this beam was 169.5 kN and the ultimate deflection was 206.4 mm. Figure 6(b) shows the beam G2 at 

failure.  

4.3. Segmental Plain-Key Beam (G3) 

A different cracking pattern occurred in the case of segments with plain joint type. The first crack was initiated in the 

concrete covers of the middle segment which were attached to the epoxy mortar for joints 2 and 3. New cracks were 

developed within the range of the first segment as the load was increased. All cracks initiated from the lower concrete 

surface and propagated to pass the centerline of the beam. By adding more loads, more cracks were developed in the 

adjacent segments; as depicted in Figure 5(c). No cracks were created in the edge segments as well as in joints 1 and 4. 

The deflection continued to increase until a sudden failure in the post-tensioned strands occurred (Figure 6(c)). 

4.4. Segmental Single-Key Beam (G4) 

The beam remained without any cracks until the applied load reached 40.6 kN then hairline cracks were observed on 

the bottom surface of the middle segment. As the load was increased, more cracks were created and propagated at the 
middle segment as well as joints 2 and 3. Furthermore, the gradually increase in loading let the cracks to pass toward 

the neighbor segments (segments 2 and 4). These cracks were inclined which were known as flexure shear cracks. The 

cracks were widely opened at joint 2 and flexure shear cracks followed by crushing in concrete occurred at the mid-

span. During the inspection of joint 2, the post-tensioning force was released and the segments were kept together by 

the tendons. Due to the discontinuity of the steel reinforcement between segments, a stress concentration, localized 

cracks, and yielding in the tendons occurred at joint 2 when the load reached the ultimate capacity of the beam. No 

cracks were detected at the edge segments as illustrated in Figure 5(d). Figure 6(d) shows the beam G4 at failure. 

 

Figure 5. Cracks patterns for the tested beams (a) beam G1; (b) beam G2; (c) beam G3; (d) beam G4 
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Figure 6. Failure for the tested beams (a) beam G1; (b) beam G2; (c) beam G3; (d) beam G4 

5. Comparison of Results 

For the segmental beams with different types of joints, it was noticed that the cracks at joints occurred in the interface 

between the concrete and the epoxy mortar; that can be attributed to the higher tensile strength of the used epoxy in 

comparison to concrete; as illustrated in Figure 7. Comparisons between the experimental findings for all tested 

specimens were shown in Figure 8. These comparisons were conducted based on the load-deflection responses, strains 

in concrete, strains in the post-tensioned tendons and strains in the shear reinforcements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Cracks in beams (a) reference beam; (b) multi-key joint beam; (c) plain-key joint beam and (d) single-key joint 

beam 
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5.1. Load Deflection Responses 

The load-deflection relationships, in Figure 8(a), illustrated the initial upward cambers due to the effect of the post-

tensioning force and the downward deflections due to the service loads at mid-spans of the tested beams. Initially, all 

the tested beams had the same flexural stiffness because of the un-cracked concrete behavior. With further loading, the 

cracks at mid-spans caused a reduction in the beam flexural stiffness. The general theme which was abstracted from the 

experimental results reflected an approximate similarity in the behavior of the four types of beams with slight 

differences. The ultimate load for the reference beam was 172.4 kN with a difference of 1.7%, 6.6% and 3.5% in 

comparison to the segmental beams with multi-keys, plain-key, and one-key joint, respectively. 

5.2. Strain Measurements 

Two strain gauges at each leg of the stirrup at joint 1 were glued and the average reading was obtained. Figure 8(b) 

illustrated the obtained measurements of each pair of strain gauges at joint 1. Based on these values of strains, the shear 

reinforcement was far from yielding. In addition, the strain readings for the reference beam showed fewer values in 

comparison to the other segmental beams because the continuity of concrete helped to share a part of the shear stresses. 

Figure 8. Experimental findings (a) deflection at mid-spans; (b) strain in stirrups at joint 1; (c) strain in concrete 

(bottomsurface); (d) strain in concrete (top surface) and (e) strain in tendons 
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Figure 8 (c and d) showed strains in concrete at mid-spans of the tested beams. The positive strain values represented 

a tensile strain on the bottom surface of concrete. Some of strain gauges on the bottom surface of concrete might have 

been at locations where concrete cracks formed. Therefore, the results of these strain gauges were stopped before 

reaching the ultimate capacities of the beams. In contrast, the negative strain values indicated a compressive strain on 

the top surface of concrete. Each curve of strains on the top surface involved three regions with two turning points. The 

first turning point designated the initial cracks in concrete. The second turning point indicated yielding in the steel 

reinforcement or the post-tensioned tendons. 

The average initial elongations for the post-tensioned tendons in the monolithic beam was 83 mm whereas the 

elongations were 79.5, 80.75 and 80 mm in beams with multi-key joint, plain-key joint and one-key joint, respectively. 

These values of elongations were used to calculate the initial strains in the tendons by dividing the elongations with the 

original lengths. The strains were recorded by strain gauges during the tests. Therefore, the total strains in the post-

tensioned tendons at any stage of loading were equal to the initial strains caused by the initial post-tensioning force plus 

the change in the strains due to the service loads; as illustrated in Figure 8(e). 

6. Conclusion 

Series of static tests were carried out to investigate the behavior of full-scale SPPRC beams with different types of 

joint configuration; multi-key joint, single-key and plain-key joint. The main conclusions were:  

 The general theme that was abstracted from the experimental results reflected an approximate similarity in the 

behavior of the four types of beams with slight differences.  

 The percentage of change in the ultimate load of the segmental beams as compared to the corresponded value of 

the monolithic beam was in the range of 1.7% to 6.6%. The lower bound of this range corresponded to the beam 

with multi-key joints, while the upper bound corresponded to the beam with plain-key joints. 

 In the segmental beams with different types of joints, it was noticed that the cracks at the joints occurred in the 

concrete covers attached to the epoxy mortar which can be attributed to the higher tensile strength of the used 

epoxy in comparison to concrete. 

 The strain readings in the shear reinforcement for the reference beam showed fewer values in comparison to the 

other segmental beams. The main reason for that was the continuity of concrete helped to share a part of the shear 

stresses. 
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