
 Available online at www.CivileJournal.org 

Civil Engineering Journal 

Vol. 3, No. 12, December, 2017 

 

 

 

 

 
  

 

1366 

 

A Cell Centered Finite Volume Formulation for the Calculation of 

Stress Intensity Factors in Mindlin-Reissner Cracked Plates 

A. Amraei a*, N. Fallah b,c 
a PhD Candidate, Department of Civil Engineering, University of Guilan, Rasht, Iran. 

b Department of Civil Engineering, University of Guilan, Rasht, Iran. 

c Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran. 

Received 27 October 2017; Accepted 19 December 2017 

Abstract 

In fracture analysis, the stress intensity factor (SIF) is an important parameter which is needed for describing the stress 
state at crack tip. In this paper a finite volume formulation is developed for calculating the stress intensity factor (SIF) in 
Mindlin-Reissner plates with a through-the-thickness crack (through crack). For approximating the field variables and its 
derivatives the moving least square (MLS) technique is utilized. The problem domain is discretized into a mesh of 
elements where each element is considered as a control volume (CV). The center of CVs are considered as computational 

points where the unknown variables are associated with. The equilibrium equations of each CV are written based on the 
stress resultant forces acting on the boundaries of CV where the first order shear deformation theory (FSDT) is 
implemented in the formulation. Some benchmark problems of plate with through cracks are solved by the present 
method and the obtained results are compared with the results of analytical and XFEM numerical methods in order to 
demonstrate the accuracy of the present formulation. These comparisons illustrate the accuracy of predictions of the 
present solution method. Nevertheless, it is found that the formulation is free of shear locking property which greatly 
facilitates the cracked plates analysis due to its dual capabilities of analyzing both thin and moderately thick cracked 
plates. 

Keywords: Mindlin-Reissner Plate Theory; Finite Volume Method; Moving Least Squares. 

 

1. Introduction 

Plate and shell elements are used in the construction of large number of structures such as airplane fuselages, 

storage tanks, and ship hulls. These structures are subjected to cyclic pressure which may develop defects inside the 

plate material and lead to arising cracks through the thickness of plate. Due to cyclic nature of applied pressure on 

these elements, evolving the through crack, results in the sudden failure; so-called as fatigue fracture. Investigation of 

this type of fracture is an important issue in the design of these structures. On the other hand, the plate element, due to 

its simplicity is used more than the shell element for modeling of the above mentioned structures. Thus there is a 

fracture problem that contains a plate element with through crack under the lateral loading in which internal moments 

and shear forces can be yielded. Similar to cracked plates under the in-plane loads, the main parameter which 

determines the crack tip field of the cracked plate under the edge moments, is the stress intensity factor. To study the 

cracked plate under the lateral loading, indeed three dimensional models represent the stress and displacement fields 

near the crack tip more accurate than the simplified two dimensional theories but accompanied with difficulties in 

approaching to solution. Therefore, two dimensional plate theories such as the Mindlin-Reissner plate theory -so called 

the Reissner plate theory- and Kirchhoff plate theory have been developed by researchers to simplify obtaining the 
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solution. The discrepancy between the Kirchhoff and Reissner models is the effect of transverse shear strains through 

the thickness of plate which is considered in Reissner model while it is ignored in the Kirchhoff model Considering 

this effect, allows the boundary conditions on the crack surface to be satisfied in the same manner as introduced in the 

case of three dimensional analysis. However, many researchers analyzed the cracked plate based on the Kirchhoff 

theory. Besides the analytical methods the numerical approaches have been presented by many researchers to study the 

bending cracked plate. In the following parts, some of the important works are reviewed. 

The primarily works on the cracked bending plate related to deriving the analytical solutions for stress and 

displacement fields near the crack tip in a cracked plate under the edge moments. For example, in both Refs. [1, 2] 

Kirchhoff theory has been used for a cracked plate under the edge bending moment. In the first work, Williams 

asymptotic fields near the crack tip have been derived by an eigenfunction expansion, in which the results of the 

principle stresses in the crack tip were not the same as those of plane stress state, in the second work, Keer and Sve 

have derived the expressions for the SIF and strain energy calculations at crack tip for edge and central cracked finite 

plates. Knowles and Wang in 1960 [3] have investigated bending of Reissner cracked plate with infinite dimensions 

under edge moments. It was found that contemporary to Kirchhoff theory, the principle stress near the crack tip is the 

same as that value expected from the plane stress state Also the shear stress near the crack tip varies asymptotically as 

𝑟−1/2 when 𝑟 → 0, different to that predicted by Kirchhoff theory. Hartranft and Sih in 1968 [4] investigated the effect 

of plate thickness on the stress distribution field in a very closely region around the crack tip for a Reissner cracked 

plate in both cases of a crack of finite length and of infinite length. Authors reported the bending stress as much as 

sixty- two present greater that obtained by Knowles and Wang [3] for very thin plate. Boduroglu and Erdogan in 1983 

and also Joseph Erdogan in 1991 [5, 6] have used a method based on the Mindlin-Reissner theory for calculating the 

SIFs in cracked plate under the edge bending moments. In the first work a cracked plate solved by a perturbation 

method and the SIFs have been calculated for the various crack length to plate width ratio for cases of central crack 

and symmetric edge cracks [5]. In the second work this problem solved by considering the plate thickness to crack 

length ratio as the effective parameter and the obtained results were differed considerably with those values obtained 

by Kirchhoff theory [6].  

Zucchini et al. in 2000 [7] implemented a three dimensional finite element analysis for thin cracked plates in which 

the applied loading includes the edge bending moments, edge twisting moments and also out of plane shear forces. In 

That work, the results were compared with the analytical results presented in literature and obtained using the Reissner 

or Kirchhoff theories. Reported results denote that the stress field approximated by Reissner theory is conformed to 

three dimensional elasticity field in distances less than 0.1 of plate thickness from crack tip only, and is diverged away 

from these distances. On the other hand, the stress fields approximated by Kirchhoff theory is conformed to ones 

obtained using three dimensional elasticity theory only in distances more than thickness of plate from the crack tip. 

However authors reported that for thin plate, the value of J integral calculated using Reissner theory has been 

determined as the average values of this integral obtained by the three dimensional theory. Also authors reported that 

energy release rates computed based on the Kirchhoff and Reissner theories are the same as values computed using the 

three dimensional finite element analyses. Hui and Zehnder in 1993[8] have derived the stress and displacement fields 

near the crack tip for a Reissner cracked plate using an asymptotic approach. Also the authors calculated the SIFs for 

Reissner and Kirchhoff thin cracked plate and produced. Also the authors suggested, for very small plate thickness in 

the order of 0.02 crack length, as long as small scale plastic yielding tip is prevailed on plate thickness, the Kirchhoff 

approach may be a better choice for solving the problem of cracked plate. But Zehnder and Viz in 2005 [9] proposed 

the analysis of thick cracked plate under the edge moments and torsional loading must using the Reissner theory or 

even using the three dimensional elasticity theories. Wang et al. in 2003 [10] have derived the complex stress function 

for a  single crack in an infinite plate, the moment stress intensity for cracked Kirchhoff plate were obtained by 

satisfying the boundary conditions of crack surface  and plate  edge in the mentioned function using of  the collocation 

method.  

Analytical solutions for finding SIFs for cracked plate under moment and shear loading have been limited to very 

simple geometries and loadings. Even in Reissner cracked plates, the most results have concerned for infinite plates 

and a few solutions have been presented for finite ones. Therefore considerable attempts have been made based on the 

numerical methods in order to fill this gap. Among the numerical methods, the finite element method as a prevalent 

method in fracture mechanics has been used to study the bending of cracked plate under the lateral loading and edge 

moments by many researchers. Alwar and Nambissan in 1983 [11] by using the isoparametric elements and a three 

dimensional modeling performed a fracture analysis of thick plate and found that for this type of plate, the SIF is 

varied nonlinearly across the plate thickness. Barsoum in 1976 [12] for simulating the singularity in the crack tip, have 

used a degenerated singular isoparametric element at crack tip. The author calculated the SIF for a central cracked 

plate with different thickness covering both thin and thick plates. Accurate values obtained for the thick and 

moderately thick plates but for thin plates a substantial error has been reported compared to Reissner theory. Ahmad 

and Loo in 1979 [13] proposed a triangle singular element for crack tip to calculate the bending and shearing SIFs in 

thin plates. In this method, a refined mesh was also used near the crack tip and several problems of cracked plate with 
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edge moments and lateral pressure loading for central and edge cracks have been analyzed. The results obtained by 

using of a displacement type formulations which deduced from the Williams expansions [1]. Alwar and Ramachandran 

in 1983 [14] by using the three dimensional finite element analysis in which the isoperimetric singular elements have 

been suited in crack tip, calculated the SIF values in a central cracked plate for various dimensions of plate and crack 

length. The obtained results found to vary nonlinearly across the plate thickness and are as much five to ten percent 

more than the results obtained from the Reissner theory. Rhee and Atluri in 1982 [15] have presented a hybrid stress 

finite element procedure wherein the singular quadrilateral element was used in crack tip and the SIF are calculated for 

cracked plate based on Reissner theory. Sosa and Eischens in 1986 [16] have derived the path independent integral so-

called as J–integral for the cracked plate based on the Reissner theory. The authors by using a simple finite element 

mesh conformed to crack surface and also using the path independent integral, the SIFs for the cracked plate computed 

based on Reissner theory and various crack length to plate dimension ratios were considered. Dolbow used the 

extended finite element method (XFEM) [17] for the fracture analysis of Reissner plate in which the enrichment 

functions obtained from the analytical solution for crack tip fields used for the crack tip elements. In the above work, a 

plate with an inclined centered crack with various angles under uniform bending was analyzed successfully; however 

the shear locking problem for very thin plates has been reported in this Reference. Su and Leung in 2001 [18] by 

expansion the displacement field near the crack tip and also employing the fractal two-level finite element, both 

moment intensity and twisting intensity factors have calculated for a bending mode and mixed mode loadings of a 

center cracked plate based on Reissner plate theory. The results obtained were in agreement with those calculated by 

other numerical methods presented in literatures. Recently Lasry et al. have used XFEM to calculate the SIFs for 

Kirchhoff plates [19]. They computed SIFs for a very thin cracked plate using two strategies, the direct estimation and 

J-integral. They also obtained the optimum value of the radius of enrichment domain which have been derived in terms 

of crack length. Bhardaj et al. calculated SIFs for the Reissner cracked plate with different loads and boundaries using 

the extended isogeometric analysis [20]. Their obtained results were in agreement with those have been obtained from 

XFEM even were more accurate in some cases. Tanaka et al. in 2015 [21] have been developed an effective meshfree 

formulation for cracked bending plate based on Reissner theory in which the stabilized conforming nodal integration 

and subdomain conforming integration techniques have been used to integrate the stiffness matrix. For several through 

the thickness cracked plate problems, the moment stress intensity factors evaluated using the J- integral approach, have 

been reported and compared to that obtained from the analytical solutions. Also Tanaka et al. in 2017 [22] the 

meshfree formulation employed and mixed moment intensity factors have been evaluated for an inclined cracked plate 

based on Reissner theory via a path-independent J-integral and accurate results have been reported compared to 

analytical solutions. It should me mention that in the modeling of the cracked plate a very refine mesh is used in a 

small region around the crack tip. 

According to the above works there are issues in the application of finite element method for the analysis of cracked 

plate. In order to simulate the crack tip singularity in the framework of finite element, one must use the singular 

elements such as the degenerated isoparametric element with a very refined mesh around the crack tip. Also, XFEM 

the well-known finite element method for fracture analysis of structures, cannot be assessed as a reliable method for 

this type of fracture problems due to encountering with the shear locking problem in the analysis of very thin plates 

based on the Reissner model. So one may seek an alternative method that can overcome these issues.  

The finite volume method (FVM), which is a well-known numerical method in the field of fluid dynamics, has been 

also used for the stress analysis of structures [23]. Wheel [24] presented a finite volume formulation for the analysis of 

bending plates based on Reissner theory. Author declared that no shear locking observed in the analysis of very thin 

plate by this method. Also Fallah [25] formulated the cell-centered and cell-vertex finite volume methods for the 

Reissner plate analysis under the lateral loading where no shear locking has been reported. Ivankovic et al used the 

FVM to study the crack propagation phenomenon for the analysis of pressure pipe test [26]. Also Stylianou et al [27, 

28] applied a FVM based method for studying the dynamic fracture in 2D media by using the methodology of release 

node technique and cohesive zone concept. According to the published research, no investigation for the application of 

FVM for the fracture analysis of cracked bending plate has been reported so far. Therefore, in this work, a finite 

volume method based formulation is presented to study the bending of a cracked plate. Simplicity in implementation 

and the inherent high stability and also being shear-locking free in the Reissner based plate formulation are those of the 

attracting feature of the FVM method [23, 24]. In this work, a local weak-form equilibrium equation of isotropic 

moderately thick plate, based on the Mindlin-Reissner plate theory is obtained. Moving Least Squares (MLS) 

approximation which has been used in many of the numerical methods such as, the meshless local Petrov Galerkin 

method [29] and the element free Galerkin method (EFGM) [30] has been used in this work. MLS technique is able to 

approximate the displacement field with a desired order of accuracy by using appropriate polynomials in its basis 

function [31]. A regular mesh consist of quadrilateral control volumes (CVs) over the plate domain is constructed and 

the visibility criterion [30] is used to treat the crack line presence in interpolation of the field variables of nodes around 

the crack line. Also to enforce the boundary condition at plate edge and crack surface, a set of nodes suited on the 

boundary of plate and also suited adjacent to crack line are used. In the mentioned nodes the boundary condition of 

plate and the condition of crack surface are imposed by the collocation technique [32]. This treatment of the 
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discontinuity due to crack is more easy to accommodate than what is done in XFEM in which a Heaviside function 

imported into the finite element mesh and unknown variables defined for nodes located nearing the  crack geometry. 

Also in this research the interaction integral is employed for evaluating the moment intensity factor in which 

appropriate auxiliary terms of stress and displacement are needed and these terms can be selected from the expansions 

of stress and displacement fields near the crack tip presented in literatures. Several problems of through the thickness 

cracked plates with thickness ranging from thin to thick and under different loadings are solved using presented finite 

volume based method. The results obtained are more accurate than those obtained by other numerical methods. The 

moment intensity factor calculated for varying ratios of crack length to plate width.  Versace ratios of crack length to 

plate width.  

The layout of the present paper is as follows: in the next section, a plate formulation according to the Mindlin-

reissner model is presented briefly. Then by applying the weak form of differential equations governing the plate 

equilibrium and considering the boundary conditions especially boundary conditions of cracked faces, the FV based 

discretized equilibrium equation is obtained for all the CVs representing the plate.  In section 3, crack tip fields for 

cracked Reissner plate and also the interaction integral for calculating the SIFs values of crack tip are presented. In 

section 4, by solving some benchmark problems, the results of the present study are compared with the results obtained 

by other numerical and analytical methods. And finally the conclusions are drawn in section 5. 

2. Formulation 

In the finite element method the mid-plane of plate is discretized to a set of elements where by interpolating the 

displacement fields inside each individual element and applying the energy principles the discretized equations are 

obtained. On the other hand, in the finite volume method the CVs constructed around the field nodes scattered over 

mid-plane of plate, and the equilibrium equation is written for each CV. By assembling the established equations of all 

the CVs, the system equations governing the problem domain can be resulted. The distinguished feature of the finite 

volume method is satisfaction of the equilibrium equation for each local domain of CV when the domain integral is 

eliminated, hence researchers found this method as an interesting method in the computational mechanics [33, 34]. In 

the finite volume method, the CVs can be taken overlapped or non-overlapped [35]. On the other hand to approximate 

the displacement function at an interest point of the domain one can employ the well-known techniques for 

approximation of displacement which are used in the meshless methods, like Radial point interpolation method 

(RPIM) and moving least square method. These techniques already have been applied to the analysis of plates 

successfully [36-38]. Therefore, by employing these techniques in the finite volume method the displacement of an 

interest point on the faces of CVs can be interpolated in terms of displacement of nodes fallen inside the ‘support 

domain’ defined for that point. Among the later techniques, the MLS is a well-known method for approximating the 

unknown variables in any point of domain where by constructing a smoothed function over a set of nodes the nodal 

displacements and rotations can be resulted [31]. 

 In this section, at first a finite volume based formulation for the Reissner plate with a through crack is presented 

and then the MLS technique for the approximation of field variables at the interest point of mid-plane of plate is 

presented. 

2.1. Finite Volume Formulation for Cracked Reissner Plate 

The Mindlin-Reissner plate is a two dimensional model for the three dimensional body of the plate where one of its 

dimension, i.e. thickness, is small rather than the two other dimensions. In this model, different to Kirchhoff model the 

main assumption is that the plane perpendicular to the mid-plane of the un-deformed plate is not perpendicular to the 

deformed mid-plane after deformation due to the presence of the lateral shear stresses [39]. Accordingly, at every point 

of interest, P, the plate section rotations about the x and y axes of Cartesian coordinates, i.e. 𝛽𝑦 and 𝛽𝑥deduced as 

follows: 

𝛽𝑥 =
𝜕𝑤

𝜕𝑥
− 𝛾𝑥𝑧     ,      𝛽𝑦 =

𝜕𝑤

𝜕𝑦
− 𝛾𝑦𝑧   (1) 

where w is the transverse displacement, βx  is rotation about y axes and 𝛽𝑦   is the rotation about the x axes 

corresponding to the considered point P, Figure 1. In this way, the displacement components of interest point, P, of the 

mid-plane can be presented as follows: 

𝑢 = 𝑧𝛽𝑥(𝑥, 𝑦)                                          (2) 

𝑣 = 𝑧𝛽𝑦(𝑥, 𝑦)                                          (3) 

𝑤 = 𝑤(𝑥, 𝑦)                                        (4) 

Where u and v are the in plate displacement along the x and y axes respectively. 
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As displayed in Figure 2 to analyze the cracked plate using the finite volume method one can discretize the mid-

plane of plate to a set of CVs which are corresponded to the field nodes distributed over the domain. In the present 

work, a uniform node distribution, hence identical rectangular or square CVs, depends to the plate geometry, can be 

constructed. Although one can use the irregular node distribution where results in CVs with different geometries. It 

should be noted that in the cracked plate, the CVs are considered on both sides of the crack line as shown in Figure 2. 

Also it should be mentioned that in the present work, we use non-overlapping CVs. 

 

Figure 1. Displacement of the interest point P in the Reissner plate model 

 

Figure 2. discretizing the domain of cracked plate by CV’s 

In FVM, the governing equations for cracked plate can be obtained by writing equilibrium equations of acting 

external transverse forces and internal stress resultant forces on faces of a CV, see Figures 3 and 4. Therefore the 

equilibrium relations for a CV placed on the mid-plane of plate lied on the xy plane, can be written as follows: 

∑𝑀𝑥 = 0                                                     (5) 

∑𝑀𝑦 = 0                                          (6) 

∑𝐹𝑍 = 0                                 (7) 

Where Equations 5 and 6 show the balance of moments about the y and x axes respectively and Eq.7 represents the 

balance of forces acting along the z axes which is perpendicular to the mid-plane. According to Figure 3 in which a 
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typical CV with an arbitrary number of faces is shown, the force and moments corresponding to the faces of CV which 

are resulted from the normal and shear stresses distributed over the plate thickness can be integrated on the CV faces, 

These integrals can be approximated by using Gauss quadrature rule, which is applied in the present work. Hence, the 

above equilibrium equations can be approximated as follows: 

∑∑{
(Mx

j (XQj
k )αx

k +Mxy
j (XQj

k )αy
k) ŵj|Jqk| −

(Qx
k(XQj

k )αx
k + Qy

j
(XQj

k )αy
k)(xkQj − xP)ŵj|Jqk|

} = 0 

ng

j=1

nk

k=1

 (8) 

∑∑{
(My

j (XQj
k )αy

k +Mxy
j (XQj

k )αx
k) ŵj|Jqk| −

(Qx
k(XQj

k )αx
k + Qy

k(XQj
k )αy

k)(yQj − yP)ŵj|Jqk|
} = 0

ng

j=1

nk

k=1

 (9) 

∑∑{−(Qx
j
(XQj

k )αx
k +Qy

k(XQj
k )αy

k)ŵj|Jqk|} + qAP = 0

ng

j=1

nk

k=1

 (10) 

The parameters presented in Equations 8 to 10 are defined as follows: nk is the number of faces of CV, ng is the 

number of gauss point considered on each face, XQj
k  is the coordinates for gauss point j-th on face k–th, αx

k and αy
k are 

cosine directions of outward normal to face k, ŵj and Jqk are weight and Jacobin values of the integration in the j-th 

gauss point of the k-th face, respectively. It should be noted that if the face of CV laid on the crack path it is free of 

traction so no Gauss point is defined there.  

Equations 8-10 expresses the relations of internal moments and shear forces acting on CV faces and the external 

loading on the plate. One can use the constitutive equation of Reissner plate [39] to express the moments and shear 

forces in terms of strains components, this equation is presented as follows: 

[
 
 
 
 
𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

𝑄𝑥
𝑄𝑦 ]

 
 
 
 

=  

[
 
 
 
 
 𝐷
𝜈𝐷
0
0
0

    

𝜈𝐷
𝐷
0
0
0

    

0
0

(1 − 𝜈)𝐷

2
0
0

    

0
0
0

𝐺𝑡
1.2⁄

0

    

0
0
0
0

𝐺𝑡
1.2⁄ ]
 
 
 
 
 

.

[
 
 
 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧 ]
 
 
 
 

 (11) 

Where 𝐷 is the flexural rigidity and defined by: 

𝐷 = 𝐸𝑡3/12(1 − 𝜈2) (12) 

In which t is the plate thickness, E, G, and ν are elastic modulus, shear modulus of plate material and Poisson’s 

ratio, respectively. In Eq.11, the strain vector can be divided to two parts as, bending strains, εb , and shearing strains, 

εs , which are expressed in terms of the displacement and rotations derivatives as follows [39]: 

 

Figure 3. A typical CV with through crack aligned with one face 
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Figure 4. (a) Positive convention of stress resultant forces and external load; (b) Positive convention of rotations 
 

𝜺𝑏 = {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

} =

{
  
 

  
 

𝜕𝛽𝑥
𝜕𝑥
𝜕𝛽𝑦

𝜕𝑦

𝜕𝛽𝑥
𝜕𝑦

+
𝜕𝛽𝑦

𝜕𝑥 }
  
 

  
 

 (13) 

𝜺𝑠 = {
𝛾𝑥𝑧
𝛾𝑥𝑧
} =

{
 

 
𝜕𝑤

𝜕𝑥
+ 𝛽𝑥

𝜕𝑤

𝜕𝑦
+ 𝛽𝑦}

 

 
 (14) 

Where βx and βy are rotations at the interest point on the faces of CV. Hence Equations 8-10 can be expressed in terms 

of unknown displacement and rotations by using the above equations. 

2.2. Moving Least Squares (MLS) Approximation 

In this section the MLS technique for approximating the field variables of the Reissner plate, namely rotation 

components and transverse displacement, is explained. Since in MLS approximation for field variables of the plate, 

similar interpolation function can be used for all the variables, hence the technique is presented for a general field 

variable say u.  

In the MLS technique the unknown function u(X) at a favorite point X of the domain of problem is approximated 

continuously as follows [31]: 

𝑢(𝑋) =∑𝑝𝑖(𝑋)

𝑚

𝑖=1

𝑎𝑖(𝑋) = p
T(X) a(x) (15) 

Which m  is the number of the monomial basis used in the MLS approximation, and pT(X)  is the vector of 

monomial basis which is a linear combination of variables ‘x and y’ with the desired orders. The first-order and 

second-order of pT(X) for a two dimensional domain are stated as follows:  

For linear basis, 

𝑃𝑇(𝑋) = {1, 𝑥, 𝑦} (16-a) 

And for quadratic basis, we have: 

𝑃𝑇(𝑋) = {1, 𝑥, 𝑦, 𝑥2 , 𝑥𝑦, 𝑦2} (16-b) 

Note that usually the quadratic basis is selected as basis function in application of MLS to plate problems [31]. In 

Eq. (15), a(x) is called as the associated unknown coefficients and x = [x, y]T is a vector of space coordinates. The 

a(x) coefficients are obtained by minimizing a weighted discrete L2 norm as follows: 

J =∑w(

𝑛

I=1

𝑋 − 𝑋I)[u(X) − u(𝑋I)]
2 =∑w(

𝑛

I=1

𝑋 − 𝑋I) [∑𝑝𝑖(𝑋)

𝑚

𝑖=1

𝑎𝑖(𝑋) − u(𝑋I)]

2

 (17) 
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∂J

∂a
= A(X)a(X) − B(X)û = 0 (18) 

Where n is the number of nodes fallen into the support domain of interest point X. Support domain may be assumed in 

any shape, for example, circle, rectangle, or elliptical, where the rectangular shape centered at the interest point X is 

used as the support domain in this work, Figure 5. Note that if crack geometry crossed the support domain of interest 

point, some nodes fallout from the support domain. This issue can be treated using techniques such as visibility 

criterion or diffraction method [40]. 

 

Figure 5. Definition the support domain for the interest gauss point on the faces of CV 

The dimensions of rectangle support domain in x and y directions shown as, 2dsx and 2dsy are defined as follows 

[31]: 

dsx = αsdcx      and         dsy = αsdcy (19) 

Which αs is a parameter depending on the average field node spacing and its appropriate value for each problem is 

determined by numerical experiments [31]. 

In Equation 17,  w is the weight function, which is equal to unit in the vicinity of point XI and equal to zero on the 

edges of support domain. The conventional forms can be used for weight function such as the cubic spline function, 

quartic spline function, or exponential function. In this work the quadratic spline function is used for the weight 

function which is defined as follows: 

𝑤(𝑋 − 𝑋𝐼) = {
1 − 6𝑟̅𝑖

2 + 8𝑟̅𝑖
3 − 3𝑟̅𝑖

4      𝑟̅𝑖 ≤ 1
0                                               𝑟̅𝑖 > 1  

   (20) 

In Equation 20, |X − XI| is the distance from node I to the interest point X, and rs is the size of support domain for 

node I which is equal to dsx and  dsy in x and y directions, respectively.  

In Equation 18, û is the vector of unknown parameters associated to field nodes, also A(X) and B(X) called as 

coefficients moment matrices which are expressed by the following equations: 

A(X) =∑w(X − XI)P(XI)P
T(XI)

n

I=1

 (21) 

B(X) = [w(X − X1)P(X1)    w(X − X2)P(X2)   …    w(X − Xn)P(Xn)] (22) 

By solving the Equation 18, a(X) can be obtained as follows: 

a(X) = A−1(X)B(X)û (23) 

Substituting Equation 23 in Equation 15 results in the following equation for u (X): 

𝑢(𝑋) =∑𝜙𝑖(𝑋)

𝑛

𝑖=1

𝑢(𝑋𝐼) = 𝜙(𝑋) a(x) (24) 

Where ϕI is the interpolation function which is expressed as follows: 



Civil Engineering Journal         Vol. 3, No. 12, December, 2017 

1374 

 

𝜙𝐼(𝑋) =∑𝑝𝑗(𝑋)

𝑚

𝑗=1

(𝐴−1(𝑋)𝐵(𝑋))𝑗𝐼 = p
T(X)(𝐴−1(𝑋)𝐵(𝑋))𝐼 (25) 

According to Equation 25, displacement and rotation components of plate i.e.  w, βx, and βy are interpolated using 

MLS technique as follows: 

𝑤ℎ(𝑋) =∑𝜙𝐼(𝑋)𝑤𝐼   

𝑛

𝐼=1

 (26) 

𝛽𝑥
ℎ(𝑋) =∑𝜙𝑥𝐼(𝑋)𝛽𝑥𝐼

𝑛

𝐼=1

 (27) 

𝛽𝑦
ℎ(𝑋) =∑𝜙𝑦𝐼(𝑋)𝛽𝑦𝐼   

𝑛

𝐼=1

 (28) 

Where superscript h denotes the approximated values of variables associated with the displacement and rotation 

components of field nodes. 

2.3. Boundary Condition  

2.3.1. Essential Conditions 

In the finite volume method the essential boundary conditions can be enforced by using of line CVs which are 

placed on the boundaries of plate [25]. As shown in Figure 6a. to perform this task, the nodes associated to line CVs 

are placed on the essential boundaries of the plate. For example for plate with simple support edges or fixed support 

edges, the displacement value of boundary node, say node B in Figure 6 considered as a line CV should be set as 

follows: 

For fixed support:  

𝑤𝐵 = 0 , 𝛽𝑛𝐵 = 0 , 𝛽𝑡𝐵 = 0 (29) 

And for simply support: 

𝑤𝐵 = 0 ,   𝛽𝑡𝐵 = 0 (30) 

Where as seen in Figure 6b, βnB and βtB are components of rotation of interest node B in local coordinate n-t which n 

and t denote respectively the outward normal and tangential to the boundary at the interest point B. According to 

Figure 6b one can express the local components in terms of global components using the following equations: 

𝛽𝑛 = 𝛽𝑥𝐵 cos 𝛼𝐵 + 𝛽𝑦𝐵 sin𝛼𝐵 (31) 

𝛽𝑡 = 𝛽𝑥𝐵 sin𝛼𝐵 − 𝛽𝑦𝐵 cos 𝛼𝐵 (32) 

𝑤𝐵 = 𝑤 (33) 

Where βxB and βyB are components of rotation of interest point B corresponding to the global coordinates, x and y. It 

is obvious that one can use Equations 26 to 28 in Equations 31 to 33 for expressing the field variables, βxB, βyB, and w 

in terms of the corresponding values of the neighboring field nodes bounded by the support domain until the final 

equation for essential boundary condition concluded in terms of nodal parameters of displacement and rotations. 

2.3.2. Natural Boundary Conditions 

In this case, the value of tractions on the boundary of plate which are expressed in local coordinate nt can be 

transformed to the corresponding values in global coordinate xy as follows: 

𝑀𝑛 = 𝑀𝑥𝐵𝐶𝑜𝑠
2𝛼𝐵 +𝑀𝑦𝐵𝑆𝑖𝑛

2𝛼𝐵 + 2𝑀𝑥𝑦𝐵𝑆𝑖𝑛𝛼𝐵𝐶𝑜𝑠𝛼𝐵 (34) 

𝑀𝑡 = −𝑀𝑥𝐵𝑆𝑖𝑛𝛼𝐵𝐶𝑜𝑠𝛼𝐵 +𝑀𝑦𝐵𝑆𝑖𝑛𝛼𝐵𝐶𝑜𝑠𝛼𝐵 +𝑀𝑥𝑦𝐵(𝐶𝑜𝑠
2𝛼𝐵 − 𝑆𝑖𝑛

2𝛼𝐵) (35) 

𝑄 = 𝑄𝐵𝐶𝑜𝑠𝛼𝐵 +𝑄𝐵𝑆𝑖𝑛𝛼𝐵 (36) 

For example, for any field node on the free edges of a plate, the moments and shear force can be expressed as 

follows: 

𝑀𝑛 = 0     , 𝑀𝑡 = 0     , 𝑄 = 0 (37) 
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It should be mentioned that in case of a mixed boundary conditions in which the essential conditions and the natural 

conditions are applied together, e.g. for simply supported plate, a set of three equations is selected from Equations 31 

to 33 and 34 to 36. 

Another issue that can be raised is the boundary conditions on crack surface. Since the surface of crack is assumed 

to be free of tractions, so for the crack surface, the natural conditions corresponding to the free edge are imposed. To 

accomplish this need, line CVs are considered along the crack line, Figure 6c, and the natural boundary conditions, 

Equations 34 to 36 relevant to crack surface are imposed to the field nodes considered at the center of line CVs. 

Also it should be noted that by substituting Equations 11 to 14 in Equations 34 to 36, the natural boundary 

conditions can be expressed in terms of the field variables βxB, βyB, and wB. By substituting the approximated values 

for field variables from Equations 26 to 28, the equations of natural boundary conditions are obtained in terms of 

unknown parameters of neighboring field nodes. 

By assembling the equilibrium Equations 8 to 10 for all the CVs together with Equations 30 to 41 for boundary 

conditions, a system of linear equations is obtained in terms of unknown parameters associated to transverse 

displacement and components of rotations corresponding to the field nodes. 

3. Calculation of the Stress Intensity Factor (SIF) 

3.1. Crack Tip Fields for a Through Crack in Reissner Plate 

Because the plate model is a simplified model of a three-dimensional solid, one can derive the asymptotic fields for 

stress and displacement near the crack tip of a plate by modification of the fields corresponding to three dimensional 

model. Hartnaft and Sih [41] derived an Eigen function expansion for general stress and displacement fields in three 

dimensional cracked problems. Sosa and Eischen [16] picked the singular terms of these functions to employ in the J-

integral for calculating the SIF in the cracked Reissner plate. Dolbow [17] extracted all of the singular terms in the 

mentioned expansion and also the asymptotic stress and displacement fields near the crack tip in the cracked Reissner 

plate. The above mentioned findings corresponding to near-tip fields for kinematic variables and also for the resultant 

moments and shear forces on transverse section of the plate are presented as follows: 

 

 

Figure 6. (a) Definition of the line CV on the boundary of plate,(b) outward normal and tangential vector at the 
boundary nodes, (c) definition of line CV along the crack line 

For kinematic fields: 

𝑤 =
6√2𝑟

5𝑡𝜇
𝐾3 sin (

𝜃

2
) +

6√2𝑟
3
2

𝐸𝑡3
𝐾1 [

1

3
(7 + 𝜈) 𝑐𝑜𝑠 (

3𝜃

2
) − (1 − 𝜈) 𝑐𝑜𝑠 (

𝜃

2
)]

+
6√2𝑟

3
2

𝐸𝑡3
𝐾2 [−

1

3
(5 + 3𝜈) sin (

3𝜃

2
) + (1 − 𝜈) sin(

𝜃

2
)] 

(38-a) 
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𝛽𝑥 =
6√2𝑟

𝐸𝑡3
𝐾1 cos (

𝜃

2
) [4 − (1 + 𝜈)(1 + 𝑐𝑜𝑠 𝜃)] +

6√2𝑟

𝐸𝑡3
𝐾2 𝑠𝑖𝑛 (

𝜃

2
) [4+(1 + 𝜈) (1 + 𝑐𝑜𝑠(𝜃))]

+
6√2𝑟3/2

𝐸𝑡3
𝐾3 [− sin (

𝜃

2
) − (1 + 3𝜈) cos (

𝜃

2
) sin 𝜃] 

(38-b) 

𝛽𝑦 =
6√2𝑟

𝐸𝑡3
𝐾1 [4 sin (

𝜃

2
) − (1 + 𝜈)(cos (

𝜃

2
) sin𝜃)]  

+
6√2𝑟

𝐸𝑡3
𝐾2  [−2 cos (

𝜃

2
)(1 − 𝜈) + (1 + 𝜈) sin(

𝜃

2
) sin 𝜃]

+
6√2𝑟3/2𝐾3

𝐸𝑡3
8

15
cos (

𝜃

2
) [1 + (1 + 3𝜈) cos 𝜃]   

(38-c) 

And for moments and shearing force fields we have: 

𝑀𝑥 =
𝐾1

√2𝑟
cos (

𝜃

2
)(1 − 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

3𝜃

2
)) −

𝐾2

√2𝑟
sin (

𝜃

2
) (2 + 𝑐𝑜𝑠 (

𝜃

2
) cos (

3𝜃

2
))           (39-a) 

𝑀𝑦 =
𝐾1

√2𝑟
cos (

𝜃

2
)(1 − 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

3𝜃

2
))−

𝐾2

√2𝑟
sin (

𝜃

2
) 𝑐𝑜𝑠 (

𝜃

2
) cos (

3𝜃

2
)                        (39-b) 

𝑀𝑥𝑦 =
𝐾1

√2𝑟
sin (

𝜃

2
) 𝑐𝑜𝑠 (

𝜃

2
) cos (

3𝜃

2
)+

𝐾2

√2𝑟
cos (

𝜃

2
) (1 − 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

3𝜃

2
)) (39-c) 

𝑄𝑥 = −
𝐾3

√2𝑟
sin(

𝜃

2
) (39-d) 

𝑄𝑦 = −
𝐾3

√2𝑟
cos (

𝜃

2
) (39-e) 

In Equations 39a to 39e K1 is the SIF of crack tip corresponding to the case in which the cracked plate loaded by 

the edge symmetric moments and also  K2, and K3 are SIFs corresponding to the cases in which the cracked plate 

loaded by the edge twisting moments and the edge out of plane shearing force, respectively, see Figure 7. In fact the 

SIFs for a cracked plate are defined as the limiting values of forces and moments near the tip of crack as follows: 

𝐾1 = lim
𝑟→0

√2𝑟𝑀𝑦(𝑟, 0) , 𝐾2 = lim
𝑟→0

√2𝑟𝑀𝑥𝑦(𝑟, 0),     𝐾3 = lim
𝑟→0

√2𝑟𝑄𝑦(𝑟, 0) (40) 

  

 

Figure 7. Cracked plate under the different loads 

3.2. Interaction Integral 

Different numerical methods have been used for calculating the SIF value of plate with a through crack under the 

edge moments. Wilson and Thompson [42] calculated the SIF value for a central cracked plate under the edge 

moments by substituting the calculated nodal displacement from the finite element method in the Kirchhoff solution 

for the cracked plate. They used a refined mesh around the crack tip in order to evaluate the SIF value with more 

accuracy. Ahmad and Loo [13] used a typical singular element adjacent to the crack tip and applied the Kirchhoff 

solution for calculating the bending and shearing SIFs of cracked plate. Rhee and Atluri [15] presented a hybrid finite 

element method to analyze the Reissner plate in which a singular element at crack tip has been used and the SIF 

directly obtained from the singular function corresponding to the crack tip. Sosa and Eichsen [16] applied the path 
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independent J integral for calculating the SIF value in cracked Reissner plate under the edge moments. In order to 

achieve an exact solution, the authors used a fine mesh around the crack tip.  

In this study the domain form of the interaction integral which has been configured for Reissner plate in Ref. [17] 

has been used. In that reference the domain form of the interaction integral for cracked plate has been concluded from 

the J-integral. The authors of that work recommended the interaction integral as an efficient technique for the accurate 

prediction of SIF value. Also recently, the formulation of interaction integral has been applied to Kirchhoff plate by 

Lasry et al [19].  

In Ref [17] the relation between the SIFs, i.e. K1, K2, and K3 for a Reissner cracked plate and interaction integral 

has been presented as follows: 

𝐼 =
24𝜋

𝐸𝑡3
[𝐾1𝐾1

aux + 𝐾2𝐾2
aux] +

12𝜋

10𝜇𝑡
𝐾3𝐾3

aux (41) 

Where I is the value of interaction integral and E, μ and t are elastic modules of plate material, shearing modules of 

plate material and thickness of plate respectively. Also, the interaction integral for a cracked plate based on Reissner 

theory has been concluded as follows [17]: 

𝐼 = ∫ {[𝑀𝑖𝑗𝛽𝑖,𝑥
aux +𝑀𝑖𝑗

𝑎𝑢𝑥𝛽𝑖,𝑥 + 𝑄𝑗𝑤,𝑥
aux+𝑄𝑗

aux𝑤,𝑥] −𝑊
int𝛿1𝑗}𝑞,𝑗 dA +

𝐴

 

       ∫ {(𝑀𝑖𝑗,𝑗
aux − 𝑄𝑖

aux)𝛽𝑖,𝑥 +𝑄𝑖(𝑤,𝑖1
aux+𝛽𝑖,1

aux − 𝜖𝑠𝑖,𝑥
aux)}𝑞 dA     

𝐴

 

(42) 

Where indices i and j are selected from the variables x or y, and M and Q denotes internal moments and shearing 

forces acting on lateral plane of the plate respectively. In Equation 42, β and w are rotation and transverse deflection 

of the mid-plane respectively. Also in the above equations, q is the unit-step function which is defined in such a way 

that, takes the unit value over the central region of the integral domain and takes zero value in borders of the domain, 

see Figure 8a. Also q,j denotes the derivative of function q relative to j, δ1j is the Kronecker delta which is defined as 

follows: 

{
𝛿1𝑗 = 1       𝑖𝑓 𝑗 = 1

𝛿1𝑗 = 0       𝑖𝑓 𝑗 ≠ 1
 (43) 

And Wint is called the interaction strain energy which is calculated as follows: 

𝑊 int = 𝑀 ∶  𝜖𝑏
aux +𝑄 . 𝜖𝑠

aux = 𝑀aux ∶ 𝜖𝑏 + 𝑄
aux ∶ 𝜖𝑠 (44) 

Where ϵb and ϵs are the portions of bending strain and shearing strain from the total strain at the interest point of 

plate respectively, which are defined as follows: 

𝜖𝑏 =
1

2
(∇𝜓 + (∇𝜓)𝑡) (45-a) 

𝜖𝑠 = ∇𝑤 + 𝜓 (45-b) 

Where ∇ denotes the derivative operator defined as follows: 

∇𝑇= {
𝜕

𝜕𝑥
    
𝜕

𝜕𝑦
} (45-c) 

The domain of interaction integral encloses the crack tip and can be assumed in any shape, where in the present 

work this domain is assumed as a square area centered at the crack tip as shown in Figure 8 (b). 

 In Equation 45 variables superscripted by ‘aux’ are related to the auxiliary state and depends to the considered 

cracking mode, and they are calculated from the corresponding crack tip fields using Equations 38a to 39e. To 

evaluate the SIFs values for a cracked plate in the case of mixed modes loadings one can use the proper terms for the 

interest mode from the Equations 38a to 39e and substitutes the auxiliary superscripted terms in Equation 42. For 

example for calculating K1, auxiliary terms in Eq. (42) are replaced by the coefficients of  K1 picked from Equations 

38a to 39e,  and in Equation 44 the SIFs should set to values , K1
aux = 1, K2

aux = 0, and K3
aux = 0, which in turn the 

following equation is derived for K1 : 

𝐾1 =
𝐸𝑡3

24𝜋
 (46) 

A similar procedure can be followed for evaluating two other SIFs, i.e. K2 and K3. 
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(a) (b) 

Figure 8. (a) Interaction integral domain, (b) the shape of unit-step function used over the interaction integral 

domain 

4. Numerical Studies 

In this section, the calculation of SIFs factors for some of the benchmark cracked plate problems by the use of the 

presented finite volume method is performed. The solutions are compared with the results of the analytical and other 

numerical methods presented in references. In all of the considered problems the crack is assumed through the 

thickness of plate and crack surface is assumed free of any traction. Also the plate material is assumed to be 

homogeneous and isotropic. 

4.1. Plate with a Central Crack Under Edge Moments 

In this problem, the SIF values of a plate with a central crack under the uniform bending moments applied on two 

edges which are parallel to the crack line are investigated by using the present method, Figure 9. This problem has 

been also studied in Refs. [6] and [17] by applying analytical method and XFEM numerical technique, respectively. 

The geometry of plate is assumed similar to that presented in the later reference which reads, the length of plate, l, 

equal to 10 mm, the width of plate, b, equal to 10 mm and plate thickness is t where several values are considered for 

the thickness to represent thin to thick plates in the analysis. The plate material reads, the modules of elasticity equal 

to 1000 Mpa, and the Poisson’s ratio equal to 0.3. The crack half-length, a, reads, 1 mm. To solve the problem by the 

present finite volume method the plate domain is discretized to a set of uniform square CVs. For enforcing the 

boundary conditions on plate edges and also on crack surface further nodes are distributed aligned with the edges of 

plate and crack line, see Figure 10. For the nodes located on crack surfaces the free surface conditions have been 

imposed and the nodes located on edges of plate according to state of the plate edges, the corresponding boundary 

conditions are applied. For construction the shape function in the MLS approximation a quadratic monomial basis is 

used. The support domain is supposed as a rectangular shape with dimension equal to 2.4 times the nodal spacing. For 

evaluating the internal forces corresponding to the faces of CVs, two quadrature points are used.  

The domain size of the interaction integral varies in the range of 0.3 to 0.45 of the half-crack length depending to 

the thickness of the plate. Several plates of different thicknesses with the above mentioned properties are considered in 

the analysis for calculating their SIF values. In Figure 11 the obtained values of K1 versus the ratio of plate thickness 

to half crack-length are displayed. It is observed that for small values of the thickness ratio the results of the present 

method are in close agreement with the exact values governed by the analytical method presented in Ref. [6] where 

XFEM predictions are different for thin plates. The lack of accuracy in XFEM predictions for thin plates is due to the 

shear locking phenomena which arises in the thin cracked Reissner plates analysis using XFEM [17] where such 

locking phenomena is not appeared in the present method. The capability of the present method for the analysis of 

cracked Reissner plates with small thickness ratios is also illustrated in Figure 12 where the normalized value of K̃1 is 

presented in which K̃1 =
K1

M0√a
. As can be seen, the FVM predictions are in close agreement with the analytical results 

where XFEM numerical method has not shown such accuracy. It can be observed that for both of the present FVM 

and XFEM, for plate thickness of about 0.1 of the crack length, the accuracy of results is in good agreement. However, 

when the thickness of plate decreases to values smaller than the 0.1 of the crack length, the accuracy of SIF obtained 

from XFEM decreases considerably whereas the accuracy of FVM results is not affected. 

To investigate the accuracy of the FVM in the prediction of K1of the cracked plates with different crack length, 

several tests have been conducted. In each test, by assuming a plate with constant thickness ratio, t b⁄   and considering 

different crack length ratio, ã = a b⁄  , the normalized value of K̃1  is obtained by using the present method. The 

obtained results are compared with the predictions of XFEM and with the analytical predictions as shown in Figures 

13 to 16. As can be observed, corresponding to the cracked plates with the considered thicknesses, the results of the 

present method are comparable to the analytical predictions due to the shear locking free feature of the method. 
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Noticeably, the results of normalized moment intensity factors obtained using the presented FVM are more accurate 

than those obtained from XFEM when the plate thickness decrease to values less than 0.1 of plate width. Also in 

Figures 15 and 16 it is observed that the error of SIF values obtained from XFEM exceeds 7 and 9 percent of the 

analytical values respectively. The poor values of SIF obtained from XFEM as reported in Ref. [17] is occurred due to 

the shear locking phenomenon which have been observed in all of the finite element based methods. 

 

Figure 9. Central cracked plate under edge bending moments 

 

Figure 10. The domain of the cracked plate discretized into CVs for the finite volume analysis 

 

 

Figure 11. SIF values versus the thickness to width ratios for a center cracked plate under the edges bending moments 
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Figure 12. Normalized values of SIF versus the thickness to width ratios for a center cracked plate under the edges 
bending moments 

 

Figure 13. Normalized SIF values versus the crack length to plate width ratios for a center cracked plate, t= b/4 

 

Figure 14. Normalized SIF values versus the crack length to plate width ratios for a center cracked plate, t=b/8 
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Figure 15. Normalized SIF values versus the crack length to plate width ratios for a center cracked plate, t=b/12 

 

Figure 16. Normalized SIF values versus the crack length to plate width ratios for a center cracked plate, t= b/16 

4.2. Simply Supported Plate with a Central Crack Under Uniform Pressure 

In this test problem the K1value for a square plate with a central crack which is under the transverse uniform 

pressure is investigated by using the present method. The plate’s edges are assumed simply supports as displayed in 

Figure 17. This problem also has been studied by using of FEM and XFEM numerical methods in Refs. [16] and [43], 

respectively. The plate geometrical characteristics are taken as, the length equal to 20 units and the thickness equal to 1 

unit. The material properties of the plate are taken as, the elasticity modulus of material equal to 1000 units, and 

Poisson’s ratio equal to 0.3. Pressure loading is taken equal to 1 unit. A finite volume model constructed using a 40 ×
40 mesh of elements where each element is considered as a CV and a computational node is allocated to the center of 

each CV. In addition to this, in order to apply the boundary conditions some nodes are placed on the plate boundaries. 

By doing this a total of 1681 nodes are uniformly distributed over the plate domain. The Parameters needed in the 

analysis of this problem by the present method are justified as follows: the number of monomial basis used in MLS 

approximation equal to 6. The support domain assumed as rectangular shape with the same length and width values 

equal to 2.4 times of nodal spacing. To evaluate the internal forces on faces of CVs, two Gauss points are used. Also 

the value of the domain size used to evaluate the M-integral is dependent to crack length and varied in the range of 0.05 

to 0.65 times the crack length.  

In Figures 18 and 19 the contours of bending moment Mx  and lateral deflection w of a plate in which the crack 

length is equal to 8 units are displayed.  In Figure 20 the normalized values of KI versus the crack half-length to plate 

width ratios are shown. The results are compared with the predicted results presented in Refs. [16, 20, 43] where the 

finite element method and XFEM are used, respectively. It can be observed that the results obtained from the present 

method have a good agreement with the values predicted by XFEM and FEM. 
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Figure 17. Simply supported plate with a central crack under the uniform pressure 

 

Figure 18. Contour of bending moment 𝐌𝐱 for simply support plate with a central crack 
 

 

Figure 19. Contour of lateral deflection for simply support plate with a central crack 
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Figure 20. Normalized value of K1 for plate having central crack under pressure loading, b/h=10 

5. Conclusion 

In this work, a finite volume based formulation has been developed for calculating stress intensity factor of bending 

plates with through cracks. The capability of the finite volume method for the analysis of solid mechanics problems 

especially for the bending analysis of plates has already been discovered by the researchers where some of these 

studies have been presented in the reference section of this paper. In the present formulation Reissner plate theory has 

been considered which enables the shear effects to be accounted in the analysis. Also, the MLS technique has been 

employed for approximating the displacement variables and their derivatives at the desired points of the plate using the 

displacement values corresponding to the field nodes. Using the MLS technique enables to approximate the field 

variables and their derivatives with a desired order of accuracy which are appeared in the discretized governing 

equations. Based on the presented solution procedure, some benchmark problems have been solved and it has found 

that the present finite volume based formulation is able to predict accurate results. Also, it has demonstrated that the 

method can deal with the both thin and moderately thick cracked Reissner plates. This dual capabilities of the present 

formulation is due to its shear locking free feature which has been already observed in the un-cracked plate analysis as 

shown in the works published by the second author. Exploring the capability of the finite volume method for the 

fracture analysis of bending plates is a new research work. Surely future findings reveals more capabilities of the finite 

volume method for such challenging engineering problem. 
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