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Abstract 

This study analyzed the annual streamflow of Karkheh River in Karkheh river basin in the west of Iran for flood forecasting 
using stochastic models. For this purpose, we collected annual stremflow (peak and maximum discharge) during the period 
from 1958 to 2015 in Jelogir Majin hydrometric station (upstream of Karkheh dam reservoir). A time series model 
(stochastic model or ARIMA) has three stages consists of: model identification, parameter estimation and diagnostic check. 
Model identification was done by visual inspection on the Autocorrelation and Partial Autocorrelation Function. Three 
types of ARIMA(p,d,q) models (0,1,1), (1,1,1) and (4,1,1) suggested for the studied series. The suggested model parameters 
were computed using the Maximum Likelihood (ML), Conditional Least Square (CLS) and Unconditional Least Square 
(ULS) methods. In model verification, the chosen criterion for model parsimony was the Akaike Information Criteria (AIC) 
and the diagnostic checks include independence of residuals. The best ARIMA model for this series was (4,1,1), with their 
AIC values of 88.9 and 77.8 for annual peak and maximum streamflow respectively. Forecast series up to a lead time of 
ten years future (2006 to 2015) were generated using the accepted ARIMA models. Model accuracy was checked by 
comparing the predicted and observation series by coefficient of determination (R2). Results show that the ARIMA model 
was adequate for the flood analysis in Karkheh River and the forecast of the series in short time at future. 

Keywords: Stochastic Model; Flood Analysis; Maximum Likelihood; Karkheh River Basin. 

 

1. Introduction 

Flood analysis is a form of extreme value analysis in nature. The main interest in analyzing extreme hydrological 

events is not in what has occurred but possibilities that further extreme events such as flood will occur in the future. 

Flood analysis in particular, allows hydrologists and statisticians to estimate future flood occurrence probabilities as 

well as the peak magnitude of streamflow. Another reason flood analyses are important is that the design and operation 

of hydraulic structures such as dams and reservoirs are determined based on them. Flood modelling depends on available 

data to generate efficient estimations. There are several approaches for hydrological modelling such as deterministic, 

probabilistic and stochastic. The stochastic models are related to the probability models in the sense that both types of 

models have random variables. Time series analysis and regression techniques are applied in order to build a stochastic 

model in flood analysis. The chosen method of study falls under the category of time series modelling. Time series is 

commonly used in the field of hydrology and water resource management. The beauty of time series modelling is that 

future values of a variable can be estimated using its historical values. A time series often exhibits trends, sometimes 

shifts (jumps), seasonality and periodicity. These attributes are referred to as components in Equation 1. The components 

this equation are trend (Tt), seasonal component (St), cyclical component (Ct) and irregular component (et). 
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Hamidi machekposhti et al. (2017) studied the stochastic model to inflow of Karkheh dam at Iran and suggested 

ARIMA (4,1,1) is the best stochastic model for annual mean streamflow [4]. Time series modelling of annual maximum 

flow (AMF) of River Indus at Sukkur India to be examined by Shakeel et al. (1993) and they found that the suitable 

stochastic model was ARIMA (2,1,1) in this river [15]. The applied of ACF and PACF for annual flow of Australian 

streams were studied by Srikanthan et al. (1983). They determined the appropriate form of stochastic models (Box-

Jenkins time series models) for annual flow [17]. O'Connel (1977) suggested a type of stochastic models (ARMA (1,1)) 
to generate synthetic flow series and predict streamflow in future. [13]. Stojković et al. (2015) suggested that the 

stochastic flows (annual discharges) simulated by the stochastic model can be used for hydrological phenomenon 

simulations in river basins of large European rivers [18]. In a study, Vijaya kumar and Vennila (2016) found that an 

ARMA (2,4) model is the suitable model for generated and predicted annual inflow of Krishnagiri reservoir in the state 

of Tamilnadu at India [20]. Musa (2013) studied ARMA model for flow discharge from the Shiroro River (about 22 

years (1990-2011)) and analyzed with 3 different models namely; AR, ARMA and ARIMA models. Based on the model 

analysis and evaluations, appropriate predictions were made for the effective usage of the flow from the river for farming 

activities and generation of power for both industrial and domestic [10]. Huang et al. (2016) analyzed the annual 

maximum stage readings of three rivers in Langat River basin in Malaysia for flood predicting using stochastic model 

(ARIMA model). They found  that ARIMA(1,1,0), (1,1,0) and (1,1,1) were appropriate models for the Dengkil, Kg. Lui 

and Kg. Rinching series respectively, with their AIC values of 133.736, 55.348 and 42.292 [5]. 

Tian et al. (2011) studied extreme value analysis of stream flow time series in Poyang Lake Basin, China [19]. 

Ghanbarpour et al. (2010) studied stochastic modeling of surface streamflow at different time scales for Sangsoorakh 

Karst basin at Iran Their results indicate that autoregressive integrated moving average (ARIMA) models perform better 

than deseasonalized autoregressive moving average (DARMA) models for weekly, monthly and bimonthly flow 

forecasting applications in the study area [3]. Shering et al. (2009) used stochastic time series modeling for prediction 
of rainfall and runoff in Lidder catchment of Lidder river in south Kashmir and concluded that AR(1) model can be 

effectively used for prediction this series [16]. The further researchers like Mohamed and Etuk (2017) [6], Muhammad 

et al. (2017) [8], Otache et al. (2011) [14], Mujumdar and Nagesh Kumar (2009) [9], Nguyen et al. (2007) [11], Adeli 

et al. (2015) [1], Chakraborty et al. (2010) [2] and Nigam et al. (2014) [12] studied the application of stochastic model 

in hydrologye and, water reseource managment in the all world. 

This study develop stochastic models (ARIMA models) for prediction of flood (annual extreme streamflow such as 

peak and maximum discharge) using Box-Jenkins methodology in Jelogir Majin hydrometric station (upstream of 

Karkheh dam reservoir) in Karkheh river of Karkheh river basin in Khuzestan state at Iran. 

The purpose of this study is: 

(1) To generate or develop stochastic time series model (ARIMA model) for prediction of flood in Karkheh river basin. 

(2) To estimate parameters of ARIMA model for annual streamflow (annual peak and maximum discharge) and. 

(3) To test the validity of the annual predicted streamflow with measured and evaluated the performance of the best 

selected model. 

2. Materials and Methods 

2.1. Study Area and Data Collection 

The study area is the Karkheh river basin in west of the Iran, located in the central and southern regions of the Zagros 

mountain range and its area is more than 50000 km2. In terms of the geographical coordination, this region has been 

extended between 46˚ 57′- 49˚ 10′ E longitudes and 31˚ 48′- 34˚ 56′ N latitudes. The Karkheh River is the third largest 

river in Iran with 900 km long. This river is directly connected to the Karkheh dam, the largest surface reservoir in the 

region, which has an important role in supplying water to the region. The annual streamflow (annual peak and maximum 

discharge) selected for modelling from 1958 to 2015 (58 years) in Jelogir Majin hydrometric station (station number 9 

in Figure 1). This station is located at the upper reaches of the reservoir of Karkheh dam and is the supplier of the most 

water entering the dam reservoir and has the greatest impact on reservoir water dam. The plotted of data are shown in 

Figures 3 and 4. This data were taken from Iran Water Resources Management Organization (IWRMO). The goal of 

this study is to decrease the flood problems in Karkheh river basin through developing stochastic models (ARIMA 

model) for the study Karkheh river using Box-Jenkins approach and then, forecast future annual peak and maximum 

streamflow (discharge) values in this river by the best ARIMA model. 
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Figure 1. The study area location 

2.2. ARIMA Model 

The ARIMA modelling is actually an approach that has the flexibility to fit a model which is adapted from the data 

structure itself. The time series’ stochastic nature can be modelled by the help of the computed Auto-correlation and 

Partial Auto-correlation Function (ACF and PACF) and fundamental information such as trend, periodic components, 

random components and serial correlation can be obtained. The Box-Jenkins approach to ARIMA modelling is an 

iterative model building process where the best models have to be determined through trial and error. However, with 

the advent of computers and statistical software, this iterative process can be simplified. Commonly SAS, SPSS, 

MINITAB and STATISTICA software use for this purpose. The basic methodology of ARIMA development is shown 

in Figure 2. The ARIMA model has three main components of an ARIMA model are AR, I and MA. The AR component 

represents the auto-correlation between past and current observations, the MA component describes the autocorrelation 

structure of error and I component represents the level of differencing required to transform a non- stationarity series 

into a stationary series. A non-seasonal ARIMA model is usually denoted by (p,d,q). The order of the AR, I and MA 

components are denoted by p, d and q respectively. The general ARIMA (p,d,q) model is: 

qtqtttptpttt UUUU     22112211
 

(2) 

dttt XXU 
 

(3) 

Which Φp = auto-regressive parameter, εt = residual, θq = moving-average parameter, U=dth difference of the 

dependent variable and X= dependent variable. 

 

Figure 2. ARIMA model development 
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2.2.1.  Stationary 

Before the Box-Jenkins approach can be carried out, we need to recognize if time series is stationarity or non-

stationarity. For this purpose, there are many ways to determine stationary such as Augmented Dickey-Fuller (ADF) 

and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and trend tests (Mann-Kendall trend test). 

2.2.2. Independence 

The basic assumption in Box-Jenkins approach is that the residuals of an ARIMA model are white noise. A white 

noise series have uncorrelated random shock with zero mean and constant variance. If the residuals are independent, it 

means that there is no more information that could be extracted from the series. One of the ways to determine the 

independence is to visually inspect the correlogram of the residuals. If the correlogram shows values that are close to 

zero, the residuals are uncorrelated and independent. 

2.2.3. Transformation 

Many statistical analyses are done based on the assumption that the population being investigated is normally 

distributed with a common variance. One of the popular transformation methods is the Box-Cox transformation. Also 

another method is Ln transformation of natural series. 

2.3. Stationarity Tests 

Unit root tests such as the Augmented-Dickey-Fuller (ADF) test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

test were carried out to test the presence of a unit root while the Mann Kendall trend test was performed to check for the 

presence of a trend. The presence of a unit root or a trend should indicate non-stationarity of the series. The significance 

level used was 5%. If the series is non-stationary, differencing is required to transform it into a stationary series. On the 

other hand, if the series is stationary, the series is modelled as an ARMA process instead, which requires no differencing. 

2.4. Differencing 

The series was initially differenced once (d=1) and the ACF and PACF of the differenced series were plotted and 

analyzed. If the ACF and PACF decay rapidly then it indicates stationarity is achieved. Another indicator is the standard 

deviation of the differenced series. The optimum differenced series should have the lowest standard deviation. If the 

standard deviation of the current series is lower than that of the previous series, then the current series has the optimum 

order of differencing. 

2.5. Plotting the Series and Its ACF and PACF 

The main tools used for identification of model parameter were the visual displays of the series, which included the 

plot of natural data against time, which will show up important aspect of a time series such as trend, seasonality, outliers 

and etc., ACF and PACF. By using the annual streamflow as the input time series, the auto covariance function (c𝒌), the 

autocorrelation coefficients (𝒓𝒌) and the partial autocorrelation coefficients (𝝓𝒌(𝒌)) were calculated and the series with 

its ACF and PACF were plotted using SAS and SPSS software. The number of lags k should fall between N/4 and N, 
therefore the chosen number of lags in this study was sufficient. 
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If all the ACF and PACF values are insignificant and fall within the confidence band, it indicates that the observations 

are independent. In such a case the time series is a white noise process and no modelling could be performed. A stationary 

time series has a rapidly decaying ACF. If the ACF is slow decaying, it indicates that the series may be non-stationary 

and requires differencing. 

2.6. Identifying p and q 

Having identified the optimum order of differencing (d), the next step was to identify the order of the autoregressive 

(p) and moving average (q) parameters using ACF and PACF of series. 
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2.7. Choosing the Best ARIMA Model 

The previous step gave an indication of the order of p and q that should be fitted in the model. However, it was 

recommended to try a few different values of p and q to get the best model while preserving the parsimony of the 

parameters. To test for the parsimony of parameters, the Akaike Information Criteria (AIC) was used. The model with 

the minimum AIC was selected as the best model. The SPSS and SAS software can find the best model based on the 

AIC values calculated for a range of p and q. In this study, the maximum p and q were selected four. 

2.8. Diagnostic Checks 

After estimating the model parameters, the diagnostic checking is applied to see if the model is adequate or not. 

Therefore the following statistical tests are used: 

A. Port Manteau Lack of fit Test 

Port manteau lack of fit test is used for this purpose. It is a test of the residual independency and uses the Q-statistic 

defined as: 





M

k

tk arDSdNQ
1

2)(

 

(7) 

Where rk (at) is the autocorrelation coefficient of the residual (at) at lag k, and M is the maximum lag considered (about 

N/4), ARIMA model is considered adequate if p>chi square is greater than the level of significant 0.05. 

B. Residual autocorrelation Function Test 

The second test is the independency of the resulting (at) series, the correlogram of this series are computed for lag 

(M=N/5). The figures of RACF and RPACF (residual autocorrelation and partial autocorrelation function) show that the 

most of computed lags inside the tolerance interval (±2/√N, at 95% confidence limits). 

2.9.  Series Comparison and Forecasting 

Forecasting can be categorized into long term and short term forecasting. Short term forecasting can predict values 

that are a few time periods (a few years) into the future while long term forecasting can predict values for time periods 

that extend far beyond that. In terms of applications, long term forecasts are used for strategic planning while short term 

forecasts are used for project developments as well as operation management. Statistical methods are good for short 

term forecasting because the historical data normally exhibit inertia and do not show drastic changes [7]. Short term 

forecasting is based on identifying, modelling and extrapolating the patterns found in the data. The best model that 

passed the diagnostic checking, will predict the data series in future. We determine the degree of similarity between the 

predicted and observation data series by coefficient of determination (R2). If the pattern of the predicted series appears 

similar to the pattern of the original series, then the fitted model is a good model. The final step was to generate a forecast 

of future values. The ARIMA model can predict future values as well as its confidence interval using the calculated 

model parameters. In this study, the chosen number of predicted values was ten, which means that the values were 

predicted for the next ten years after the last observation. 

3. Results and Discussion 

Before to start of modelling, we must test the two series for normal distribution. In this study, the natural series have 

not normality therefore we gave Ln transformation of natural series. Plotting the observations of Ln natural data against 

time (Figures 5 and 6) show that there is increase trend for studied series. In this study, the Ln of natural series is not 

stationary and then has first differencing of Ln natural data to achieving stationary series (d=1). This plot shows in 

Figures 7 and 8. It is stationary and there is not trend. 

3.1. Model Identification 

The ACF and PACF plot of Ln series for the Karkheh River show in Figures 9 and 10. Since some the ACF and 

PACF values are significant and do not fall within the confidence band, it indicates that the time series are not white 

noise processes and modelling could be performed. The ACF and PACF of the once differenced (d=1) series decayed 

rapidly compared to the ACF and PACF of the Ln series. Therefore, the optimum level of differencing for the series 

was one and the d value used in the ARIMA model would be one (d=1). The ACF and PACF of this series show in 

Figures 11 and 12. Tjelogir majin in Figures 9-12 and 13-14 mean Ln transformation of data in Jelogir majin station. 

The original data in this station was not normal distribution therefore the Ln transformation is necessary. The suggested 

model for p and q are 1, 2, 3, 4 of ACF and PACF this series and we start to estimation parameters some of models. 

3.2. Estimation of the Model Parameters 

After the identification of model using the parameter estimation methods such as Maximum Likelihood (ML), 

Conditional Least Square (CLS) and Unconditional Least Square (ULS) are done. The values of parameters estimation 

are shown in Tables 1 and 2. The value of this tables showed that all selected model are suitable for entrance to next 
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stage because it have two conditional stationary and inevitability. The model that gives the minimum AIC is selected as 

best fit model. Obviously, model ARIMA (4,1,1) has the smallest values of AIC, then one would temporarily have a 

model ARIMA (4,1,1). The goodness of fit statistic and Akaike Information Criterion (AIC) values for the different 

ARIMA models are shown in Table 5 (AIC=88.87 in CLS estimation method for annual peak streamflow and 

AIC=77.75 in ML estimation method for annual maximum streamflow). In this case, the initial suggested model 

structure has the minimum AIC value and has been chosen as best model structure for annual streamflow time series. 

The results of Port manteau lack of fit test indicate in Tables 3 and 4. This tables shows that all three models are adequate 

for forecasting of studied series data. In conclusion, the ARIMA (4,1,1) model is the best model for annual peak and 

maximum streamflow (discharge) in Karkheh River at Karkheh river basin. Also the RACF and RPACF residual 

autocorrelation Function test are shown in Figures 13 and 14. This figures show that the suggested model can be 

considered as appropriate model. 

3.3. Forecasting 

In this step, we forecasted annual data for ten years ahead of original data for the period from 2006 to 2015 by 

applying the best model (ARIMA (4,1,1)) in CLS and ML estimation parameter method for annual peak and maximum 

discharge respectively. After obtaining the forecasted series (Zt for t=1, 2, 3…10), then the final series (Xt) is determined 

by reversing (Ln) transformation. The forecasting actuals were brought in Table 6. In this table we can see forecasting 

values in ten futures. Figures 13 and 14 show predicted of series for these data. The figures show us that forecasting is 

appropriate. The corresponding observed values are also shown in the Figures 15 and 16 and since agreement between 

observed and forecasted values of annual peak discharge (R2=0.84) and annual maximum discharge (R2=0.87) are very 

good, it is confirmed that the ARIMA (4,1,1) model is adequate for forecasting of annual peak and maximum discharge. 

The forecasted values in ten years future uses for calibration and verification of the best selected model. 

 

Figure 3. Original annual peak streamflow (discharge) time series 

 

Figure 4. Original annual maximum streamflow (discharge) time series 
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Figure 5. Ln transformation of annual peak streamflow (discharge) time series 

 

Figure 6. Ln transformation of annual maximum streamflow (discharge) time series 

 

Figure 7. First differencing of annual peak streamflow (discharge) time series 

 

Figure 8. First differencing of annual maximum streamflow (discharge) time series 
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Figure 9. ACF and PACF of Ln original annual peak streamflow (discharge) 

 

Figure 10. ACF and PACF of Ln original annual maximum streamflow (discharge) 

  

Figure 11. ACF and PACF of differencing annual peak streamflow (discharge) (d=1) 

 

Figure 12. ACF and PACF of differencing annual maximum streamflow (discharge) (d=1) 
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Table 1. Result of parameter estimation for the selected model 

Parameter 
Estimation 

Method 

Type (Order) and Values of 

Parameters ARIMA(p,1,q) 

Absolute 

Value of t 

Probability 

of t 

Stationary 

Condition 

Invertibility 

Condition 
A

n
n

u
a

l 
P

e
a

k
 S

tr
e
a

m
fl

o
w

 (
D

is
c
h

a
r
g

e
) 

ML 
P(1) = -0.48656 

Q(0) 

-3.81 

 

0.0001 

 

Satisfy 

 
 

CLS 
P(1) = -0.48713 

Q(0) 

-3.78 

 

0.0005 

 

Satisfy 

 
 

ULS 
P(1) = -0.49708 

Q(0) 

-3.88 

 

0.0003 

 

Satisfy 

 
 

ML 
P(1) = 0.10744 

Q(1) = 0.93539 

0.66 

10.87 

0.5104 

0.0001< 

Satisfy 

 

 

Satisfy 

CLS 
P(1) = 0.11274 

Q(1) = 0.96723 

0.69 

15.99 

0.4926 

0.0001< 

Satisfy 

 

 

Satisfy 

ULS 
P(1) = 0.12820 

Q(1) = 0.99998 

0.84 

3.35 

0.4072 

0.0001< 

Satisfy 

 

 

Not Satisfy 

ML 
P(4) = -0.3317 

Q(1) = 0.86679 

-2.25 

9.89 

0.0243 

0.0001< 

Satisfy 

 

 

Satisfy 

CLS 
P(4) = -0.33489 

Q(1) = 0.86679 

-2.19 

13.48 

0.0339 

0.0001< 

Satisfy 

 

 

Satisfy 

ULS 
P(4) = -0.36065 

Q(1) = 0.89524 

-2.4 

11.84 

0.0208 

0.0001< 

Satisfy 

 

 

Satisfy 

ML: Maximum Likelihood            CLS: Conditional Least Square            ULS: Unconditional Least Square 

 

Table 2. Result of parameter estimation for the selected model 

Parameter 
Estimation 

Method 

Type (Order) and Values of 

Parameters ARIMA(p,1,q) 

Absolute 

Value of t 

Probability 

of t 

Stationary 

Condition 

Invertibility 

Condition 

A
n

n
u

a
l 

M
a

x
im

u
m

 S
tr

e
a

m
fl

o
w

 (
D

is
c
h

a
r
g

e
) 

ML 
P(1) = -0.51759 

Q(0) 
-4.14 0.0001< Satisfy  

CLS 
P(1) = -0.49304 

Q(0) 
-3.84 0.0004 Satisfy  

ULS 
P(1) = -0.52951 

Q(0) 
-4.23 0.0001 Satisfy  

ML 
P(1) = 0.14873 

Q(1) = 0.92809 

0.86 

8.16 

0.3922 

0.0001< 
Satisfy Satisfy 

CLS 
P(1) = 0.230274 

Q(1) = 0.97512 

1.46 

28.55 

0.1501 

0.0001< 
Satisfy Satisfy 

ULS 
P(1) = 0.17543 

Q(1) = 0.99999 

1.13 

3.35 

0.2631 

0.0016 
Satisfy Not Satisfy 

ML 
P(4) = -0.26820 

Q(1) = 0.74897 

-1.71 

6.36 

0.087 

0.0001< 
Satisfy Satisfy 

CLS 
P(4) = -0.26824 

Q(1) = 0.69253 

-1.7 

5.76 

0.0964 

0.0001< 
Satisfy Satisfy 

ULS 
P(4) = -0.27556 

Q(1) = 0.85681 

-1.66 

8.77 

0.1031 

0.0001< 
Satisfy Satisfy 

ML: Maximum Likelihood            CLS: Conditional Least Square            ULS: Unconditional Least Square  
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Table 3. Result of autocorrelation check of residuals annual peak streamflow in Jelogir Majin station 

ARIMA Model Estimation Method To Lag Df Chi-Square Pr>Chi Square Adequacy for Modelling 

ARIMA(1,1,0) 

ML 

6 5 9.99 0.0754 

Satisfy 
12 11 11.25 0.4228 

18 17 14.32 0.6447 

24 23 17.26 0.7962 

CLS 

6 5 9.68 0.0850 

Satisfy 
12 11 10.94 0.4484 

18 17 14.02 0.6659 

24 23 16.93 0.8128 

ULS 

6 5 10.02 0.0748 

Satisfy 
12 11 11.29 0.4190 

18 17 14.38 0.6400 

24 23 17.33 0.7928 

ARIMA(1,1,1) 

ML 

6 4 5.32 0.2562 

Satisfy 
12 10 5.93 0.8212 

18 16 9.21 0.9046 

24 22 12.45 0.9473 

CLS 

6 4 4.63 0.3269 

Satisfy 
12 10 5.20 0.8775 

18 16 8.26 0.9409 

24 22 10.89 0.9763 

ARIMA(4,1,1) 

ML 

6 4 1.30 0.8608 

Satisfy 
12 10 2.77 0.9863 

18 16 7.46 0.9653 

24 22 10.70 0.9787 

CLS 

6 4 1.36 0.8504 

Satisfy 
12 10 2.98 0.9818 

18 16 7.56 0.9610 

24 22 10.41 0.9822 

ULS 

6 4 1.25 0.8702 

Satisfy 
12 10 2.53 0.9904 

18 16 7.61 0.9596 

24 22 11.47 0.9674 

ML: Maximum Likelihood          CLS: Conditional Least Square          ULS: Unconditional Least Square 

Table 4. Result of autocorrelation check of residuals annual maximum streamflow in Jelogir Majin station 

ARIMA Model Estimation Method To Lag Df Chi-Square Pr>Chi Square Adequacy for Modelling 

ARIMA(1,1,0) 

ML 

6 5 9.63 0.0866 

Satisfy 
12 11 10.85 0.4559 

18 17 14.10 0.6602 

24 23 21.24 0.5665 

CLS 

6 5 8.87 0.1145 

Satisfy 12 11 10.14 0.5177 

18 17 13.26 0.7185 
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24 23 20.50 0.6118 

ULS 

6 5 9.65 0.0856 

Satisfy 
12 11 10.89 0.4525 

18 17 14.21 0.6519 

24 23 21.26 0.5653 

ARIMA(1,1,1) 

ML 

6 4 3.85 0.4262 

Satisfy 
12 10 5.64 0.8445 

18 16 10.50 0.8391 

24 22 17.76 0.7201 

CLS 

6 4 4.15 0.3856 

Satisfy 
12 10 5.74 0.8365 

18 16 10.06 0.8637 

24 22 16.58 0.7861 

ARIMA(4,1,1) 

ML 

6 4 1.22 0.8752 

Satisfy 
12 10 5.29 0.8712 

18 16 10.91 0.8152 

24 22 15.22 0.8527 

CLS 

6 4 0.97 0.9139 

Satisfy 
12 10 6.01 0.8144 

18 16 11.58 0.7726 

24 22 15.57 0.8364 

ULS 

6 4 2.15 0.7077 

Satisfy 
12 10 6.91 0.7338 

18 16 13.12 0.6638 

24 22 17.33 0.7449 

ML: Maximum Likelihood          CLS: Conditional Least Square          ULS: Unconditional Least Square 
 

Table 5. Goodness of fit statistic 

Parameter ARIMA Model Estimation Method Akaikc's Statistic 

A
n

n
u

a
l 

P
e
a

k
 S

tr
e
a

m
fl

o
w

 

(D
is

c
h

a
r
g

e
) 

(1,1,0) 

ML 103.4247 

CLS 103.4469 

ULS 103.4316 

(1,1,1) 

ML 95.2824 

CLS 93.1350 

(4,1,1) 

ML 90.8381 

CLS 88.8680 

ULS 91.0387 

A
n

n
u

a
l 

M
a

x
im

u
m

 

S
tr

e
a

m
fl

o
w

 (
D

is
c
h

a
r
g

e
) 

(1,1,0) 

ML 84.185 

CLS 84.9952 

ULS 84.1939 

(1,1,1) 
ML 79.7781 

CLS 79.6182 

(4,1,1) 

ML 77.7478 

CLS 78.8943 

ULS 78.1438 



Civil Engineering Journal         Vol. 3, No. 9, September, 2017 

805 

 

 

Figure 13. RACF and RPACF for annual peak streamflow (discharge) ARIMA (4,1,1) 

 

Figure 14. RACF and RPACF for annual maximum streamflow (discharge) ARIMA (4,1,1) 

 

Table 6. Forecasts from period 2006-7 to 2015-16 

Period 
Annual Peak Streamflow (Discharge) Annual Maximum Streamflow (Discharge) 

Forecast Observation Forecast Observation 

2006-7 (1) 1451 1300 1235 1161 

2007-8 (2) 1385 1323 1177 1163 

2008-9 (3) 1092 1175 962 941 

2009-10 (4) 984 1004 920 960 

2010-11 (5) 1257 1253 1092 1070 

2011-12 (6) 1276 1187 1106 1090 

2012-13 (7) 1382 1346 1167 1202 

2013-14 (8) 1431 1401 1182 1210 

2014-15 (9) 1319 1330 1129 1150 

2015-16 (10) 1312 1290 1099 1080 
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Figure 15. Comparison of forecasted and observed annual peak streamflow (discharge) (2006-2015) 

 

Figure 16. Comparison of forecasted and observed annual maximum streamflow (discharge) (2006-2015) 

 

Figure 17. Correlation between observation and forecasted values of annual peak streamflow (discharge) 
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Figure 18. Correlation between observation and forecasted values of annual maximum streamflow (discharge) 

4. Conclusion 

The objectives of this study were develop stochastic ARIMA models for the study rivers using Box-Jenkins approach 

and forecast annual streamflow values in future using the developed ARIMA models. Recognizing and predicting annual 

peak and maximum streamflow (discharge) of Karkheh River in Jelogir Majin station during statistical period is 

necessary for flood control and planning the agricultural activities. Results from this reviewing indicated that: 

 The best ARIMA model for annual peak streamflow in Jelogir Majin station at Karkheh River was (4,1,1), with 

their AIC values of 88.9 in CLS estimation method. Also for annual maximum streamflow (discharge) was (4,1,1), 

with their AIC values of 77.8 in ML estimation method. Forecast series up to a lead time of ten years were generated 

using the accepted ARIMA models. Model accuracy was checked by comparing the predicted and observation series 

by coefficient of determination (R2). This coefficient (R2) was 0.84 and 0.87 for annual peak and maximum 

streamflow respectively. Results show that the ARIMA model was adequate for the river and forecast of the series. 

 The study reveals that the Box-Jenkins (ARIMA) model methodology could be used as an appropriate tool to predict 

the flood in this river for the up-coming 10 years (2006-2015). Also this methodology can help farmers in the area 

in order to planning the agricultural activities to enlarge the areas of land to be cultivated using supplemental 

irrigation. 

 The significant ACF and PACF functions with order of four can be caused by factors such as area good vegetation 

and snowmelt. The good vegetation of the region and so the forest causes water retention in the soil surface layer 

and delay in the rise in surface runoff. 

 The ARIMA model is suitable for short term forecasting of series because the ARMA family models can model 

short term durability very well. The AR model is a finite memory model, thus it does not fare well in long term 

forecasting. 

 The model identification is the critical step in ARIMA modelling. The values of p, q and d had to be determined 

visually and they depended on the modeler’s experience and judgment. 
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