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Abstract 

In the present paper, the effect of spatial variability of undrained shear strength on the bearing capacity of shallow strip 

footing on clay was investigated and two new and simple equations were introduced for incorporating the effect of soil 

variability parameters on the undrained bearing capacity of strip footing on clay. For investigating the spatial variability of 

clay, undrained shear strength was assumed as a spatial variable parameter with the use of random field theory. The Monte 

Carlo simulation technique was used to obtain the probability distribution of the bearing capacity of footing on 

nonhomogeneous clay. The spatial variability of the undrained shear strength was investigated using three controlling 

parameters: coefficient of variation (COV) of the undrained shear strength as well as the scales of fluctuation of the shear 

strength in horizontal and vertical directions. The Mohr-Coulomb failure criterion and finite difference method were used 

to model the plastic behaviour of soil and calculate the bearing capacity of the footing. The results show that by increasing 

the COV of the undrained shear strength, the average bearing capacity decreases while the COV of the bearing capacity 

increases. Moreover, the average bearing capacity of footing has an approximate increasing trend with increasing the scales 

of fluctuation. 
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1. Introduction 

The existing uncertainty in the mechanical response of soil to the applied loading originates from the spatial variation 

of soil properties. This uncertainty is a well-known problematic issue for the accurate design of soil-related structures. 

The random field theory (RFT) is an ordinary tool for applying the spatial variation of soils [1-5]. This theory has been 

utilized for formulating spatial variability of soil in geotechnical engineering problems. Estimating the bearing capacity 

of footings on heterogeneous clay soil is a geotechnical problem in which consideration of spatial variability of 

underlying clay layers has an important effect on the results. Although the effect of spatial variability has been 

investigated on the bearing capacity of clay layers in some previous studies [6-20], there has been no study that 

comprehensively considered the effect of spatial variability parameters on the bearing capacity of footings on clay.  

Griffiths and Fenton (2001) investigated the bearing capacity of smooth footings on clay by considering the spatial 

variability of undrained shear strength. They implemented the finite element method with Tresca yield criteria to 

calculate the bearing capacity of smooth footings. In their study, the logarithmic normal distribution was used for shear 

strength distribution in the random field. They used the coefficient of variation (COV) of undrained shear strength 

(COV(cu)) and the ratio of the scale of fluctuation to the width of footing (𝜃𝑙𝑛𝑐𝑢 /𝐵) to study the effect of spatial variability 
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of clay on the bearing capacity of footings. They implemented the Monte Carlo simulation (MCS) to obtain a 

probabilistic distribution. In their study, scales of fluctuation (𝜃𝑙𝑛𝑐𝑢) were assumed to be equal in horizontal and vertical 

directions. However, in their study, the scales of fluctuation in horizontal and vertical directions were not investigated 

as two distinct and independent parameters. They concluded that the average bearing capacity from the MCS constantly 

decreased with the increase of COV(cu); moreover, by growing of the (𝜃𝑙𝑛𝑐𝑢 /𝐵) ratio, the bearing capacity of footing 

decreased when this ratio was lower than unity but increased when the ratio exceeded unity [10]. Griffiths et al. (2002) 

investigated the effect of spatial variability of soil undrained shear strength on the bearing capacity of rough footings. 

They used the same parameters as Griffiths and Fenton (2001) to investigate the effect of spatial variation of soil on the 

bearing capacity of clay. They concluded that the effect of spatial variability of soil on the bearing capacity of rough 

footings was the same as that on smooth footings [11]. Jamshidi Chenari and Mahigir (2014) investigated the effect of 

spatial variability and anisotropy of soil on the bearing capacity of shallow strip footings. In their study, the finite 

difference method (FDM) was implemented for calculating the bearing capacity, and Mohr-Coulomb failure criteria 

were utilized to consider the mechanical response of soil to loadings. Similar to Griffiths and Fenton (2001), they used 

log-normal distribution to consider the spatial variability of soil undrained shear strength. They also did not investigate 

the effect of scales of fluctuation on the bearing capacity of footings in horizontal and vertical directions separately. 

They used two parameters (i.e., Cov(cu) and the ratio of scale of fluctuation in x and y directions (𝜃𝑥/𝜃𝑦) to study the 

effect of spatial variability of the shear strength parameter on the bearing capacity. Like previous studies, the reduction 

in the average bearing capacity with the increase in Cov(cu) was concluded. In addition, the average bearing capacity 

was observed to increase by the growth of the (𝜃𝑥/𝜃𝑦) ratio [17]. As indicated, there has been no study to examine 

comprehensively the effect of spatial variability parameters especially the scales of fluctuation 𝜃𝑥 and 𝜃𝑦 on the bearing 

capacity of footings on heterogeneous clay soils. Therefore, in this research, a parametric study is carried out to assess 

the effect of changing 𝜃𝑥 and 𝜃𝑦 values on the bearing capacity of strip footings located on purely cohesive clay. For 

calculating the bearing capacity, the FDM with the Mohr-Coulomb failure criteria is implemented using FLAC 7.0 [21]. 

Three parameters of Cov(cu) 𝜃𝑥/𝐵,𝜃𝑦/𝐵 (in which B is the footing width) with proper ranges are investigated in a 

parametric study and subsequently, the effect of changes in these parameters is assessed on the bearing capacity. 

Ultimately, two new and simple equations are proposed to estimate the average bearing capacity and scattering of the 

results from average by using multiple regression analysis (MRA)[22]. These equations can be used easily to consider 

soil spatial variability in the design of strip footings on nonhomogeneous clay. 

2. Spatial Variation of Soil  

One of the major characteristics of geological conditions of a site is depicted in soil deposits available in the site. Soil 

layers are largely formed due to gradual weathering as well as due to the erosion of rocks and sedimentation of solid 

earth materials. Soil deposits except residual soils are transported from the origin to the current position and are subjected 

to pore pressure variations, physical changes and/or chemical reactions; hence, variation in soil properties from one 

location to another is natural in the field. Variation of soil properties in the field is called spatial variation of soil 

properties and it is an important issue in the analysis and design of soil-related structures [8].  

In engineering problems, modelling of spatial variations of geotechnical properties has commonly been performed 

using the RFT. In the RFT, soil properties are assumed as correlated random numbers and subsequently, the distribution 

of soil properties in the field is modelled. Figure 1 schematically depicts spatial variation of soil properties using the 

RFT. In this figure, soil variations are assumed to occur in two perpendicular directions (i.e., x and y directions), and the 

values of soil properties fluctuate from the average regarding the characteristics of the assumed distribution and 

autocorrelation function.  

 
Figure 1. The schematic view of distribution of soil parameters by applying the random field theory 
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In this research, it is assumed that the soil undrained shear strength is distributed in the field using the RFT. Since the 

variations related to the bearing capacity of the undrained shear strength is investigated, to present the results of the 

current study, the undrained shear strength coefficient (NC) in classical bearing capacity equations is chosen [22]. NC can 

be calculated using: 

(1)  𝑁𝑐 =
𝑞𝑢

𝑐𝑢
  

Where qu is the ultimate bearing capacity of the shallow strip footing and cu is the undrained shear strength of clay. 

Since the average shear strength of clay is assumed as a constant value, there is a linear relationship between NC and 

the bearing capacity of clay. Thus in this study, two terms of “bearing capacity” and “shear strength coefficient in 

classical bearing capacity equation (NC)” are assumed equivalent and used interchangeably. As the shear strength of clay 

is always a positive value, in this research, lognormal distribution is assumed to generate a random field. Moreover, as 

noted, since NC is used to present the results of the current study, the values of cu do not affect the results; thus, for log-

normal distribution, the average undrained shear strength is assumed to be a constant value. Subsequently, to consider 

the scatter in the parameters, the COV, which is a non-dimensional ratio, is chosen instead of the standard deviation (σ). 

This ratio is: 

(2) 𝐶𝑂𝑉 =
𝜎

𝜇
 

Where µ and σ are the average and standard deviation of the distribution. 

Spatial autocorrelation between the shear strength values in the field is another characteristic of spatial variability that 

must be regarded in order to generate a random field. As is obvious in realistic field problems, two locations that are 

near each other are more probable to have closer shear strength values. In other words, shear strength values have greater 

correlation in two locations that are close to each other. The correlation between shear strength values for two points in 

the field is assumed to be just within autocorrelation length (or scale of fluctuation). Scale of fluctuation or 

autocorrelation length is a distance within which shear strength values correlate with each other; when the distance of 

two points in the space exceeds autocorrelation length, the correlation diminishes between shear strength values of the 

two points.  

In the present study, the correlation for the shear strength values is assumed in both x and y directions; thus, for this 

purpose, the Markovian spatial correlation function which is presented in Equation 3 is implemented. This correlation 

function has been commonly used in geotechnical engineering problems [12]. 

(3) 𝜌 = exp (−2√(
𝜏𝑥

𝜃𝑥
)

2

+ (
𝜏𝑦

𝜃𝑦
)

2

) 

In this equation, 𝜃𝑥 and 𝜃𝑦  are scales of fluctuation in horizontal and vertical directions; moreover, 𝜏𝑥  and 𝜏𝑦 are 

matrices for lag distances in x and y directions. As the shear strength has log-normal distribution, ln(cu) can be calculated 

using the following equation: 

(4) ln(𝑐𝑢) =  𝐿. 𝜀 + µ 𝑙𝑛 𝑐𝑢
 

Where µ𝒍𝒏 𝒄𝒖  is the average of ln(cu), 𝛆 is a Gaussian vector (with zero mean and unit variance), and L is a lower 

triangular matrix, which can be computed using the following equation: 

(5)  𝑇 = 𝐿. 𝐿𝑇  

where T is covariance matrix; this matrix can be calculated using a given covariance function. In this study, the isotropic 

covariance function of Equation 6 is implemented. 

(6) 𝑇 = 𝜎𝑙𝑛𝑐𝑢

2 exp (−2√(
𝜏𝑥

𝜃𝑥
)

2

+ (
𝜏𝑦

𝜃𝑦
)

2

) 

In this equation, 𝜎𝑙𝑛𝑐𝑢
 is the standard deviation of ln(cu); other parameters of this equation are introduced in Equation 

3. 

3. Numerical Modelling 

3.1. Modelling Configurations and Solution Algorithm 

As noted, for computation of the bearing capacity, the FDM is implemented using FLAC7.0. Geometry, boundary 

conditions of the modelling, as well as the finite difference grid, which is used for computation of the bearing capacity, 

are illustrated in Figure 2. As shown in this figure, the distances of the vertical boundaries from the footing edges are 

4.5B and the vertical distance between the bottom boundary and footing is 10B. These distances are chosen so that the 

boundary conditions do not affect the obtained numerical results. For consideration of geostatic stress conditions in 
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practical field problems, the displacements of the vertical boundaries are fixed in the horizontal direction, while 

displacements of the bottom boundary are fixed in both the horizontal and vertical directions. The footing is considered 

rigid and perfectly rough. This is done by restraining vertical and lateral movements of nodes beneath the footing and 

applying step-by-step vertical displacements to the nodes under the footing. As is shown in Figure 2 the finite difference 

grid is divided into 50 elements in both horizontal and vertical directions thus the grid consists of 2500 square elements 

and 2601 grid points. 

 
Figure 2. The geometry and boundary conditions and grid for the numerical model 

Figure 3 shows the flowchart of the steps used for the numerical modelling in this study. For consideration of spatial 

variation of the undrained shear strength, initial values used for the studied parameters must be inserted into the 

modelling code. Afterwards, by considering the lognormal distribution, correlation function and values for the COV of 

the shear strength, the matrix is calculated for the shear strength values of the grid. Finally, by applying step-by-step 

vertical displacements to the nodes under the footing as well as by monitoring vertical nodal forces and plotting a stress-

displacement graph, failure load, which is the ultimate bearing capacity of the footing, will be determined.  

A schematic graph for average vertical stress versus vertical displacement of the nodes under the footing is illustrated 

in Figure 4. Since the constitutive model that is used to study the mechanical behavior of soil to the loading is elastic 

perfectly plastic Mohr-Coulomb, the plot comprised of two distinct parts (i.e. elastic and plastic). When the shape of the 

load-displacement curve switches from a declined curve to a horizontal line, the relevant vertical load in this step will 

be recorded as the ultimate bearing capacity (qu). In this stage, a failure zone forms under the footing. In the failure zone, 

the points are in the plastic state. Figure 3 represents a typical example of failure zone under the footing from the analyses 

of the current study. In this figure, the red stars and green crosses show the grid elements where are in elastic and plastic 

states respectively. 

The steps from the generation of shear strength matrix to calculation of bearing capacity should be repeated until a 

proper statistical population is obtained. This statistical population is employed to establish a probabilistic distribution. 

Subsequently, the average and COV of the distribution will be calculated. 

 

4.5B 4.5B 

B 
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Figure 3. The flowchart of determination of the bearing capacity of foundation on clay by consideration of spatial 
variability of the shear strength 

 

Figure 4. Average stress vs. vertical displacement under the footing curve 
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Figure 5.  Failure zone formed under footing at the bearing capacity of soil 

4. Verification of the Results 

For primary verification of the results of the current study, one model is located on homogeneous clay soil to calculate 

the bearing capacity of the shallow strip footing and the result of this analysis is compared with the results of classical 

bearing capacity formulations (i.e., Terzaghi, Hansen and Meyerhof equations) [23]. As is known, the effect of 

parameters such as elastic modulus, Poisson ratio, soil unit weight and footing width (B) are negligible in determining 

the undrained bearing capacity of the shallow strip footing resting on cohesive clay. For cohesive clay in undrained state, 

the friction angle is zero; however, for convergence requirements of numerical analysis, the friction angle is given a 

small value close to zero. The constant parameters used in the analyses are listed in Table 1[24].  

Table 1. The constant parameters used in this research 

Numerical Value Parameter 

10 
Average Undrained Shear 

Strength(KN/m2) 

2 Foundation Width(m) 

17 Unit Weight(KN/m3) 

300.cu Elasticity Modulus 

0.49 Poisson Ratio 

Close to zero Friction Angle(o) 

 

In Table 2, the results obtained from the current study are compared with the results of common classical bearing 

capacity formulations. It is observed that the numerical results of the current study are equal to classical equations. 

Table 2. Verification of NC values of the current study for footing on homogeneous clay 

Bearing Capacity Equation NC 

Terzaghi 5.7 

Hansen 5.1 

Meyerhof 5.1 

Current Study 5.1 

3.2. The Parametric Study 

As indicated earlier in this study, the COV of the undrained shear strength 𝐶𝑂𝑉(𝑐𝑢) = 𝜎𝑐𝑢/𝜇𝑐𝑢  is used to represent 

the level of scatter in the undrained shear strength. The inspected parameters in the current parametric study are COV(cu), 

𝜃𝑥 and 𝜃𝑦. Reasonable ranges are selected for these three parameters so that the results obtained from the current study 

can be generalized to any empirical field conditions and can be used in the design of strip footings located on the clay 

layers with the specified degree of variability. Since the scales of fluctuation of soil act with respect to the footing width, 

the non-dimensional ratios of 𝜃𝑥/𝐵 and 𝜃𝑦/𝐵 are used in the parametric study. 

The studied parameters and their numerical values are presented in Table 3.  

 

 

qu 

Failure 

zone 
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Table 3. The parameters under investigation and their numerical values 

Numerical Values Parameters 

 0, 0.2, .., 1 𝐶𝑂𝑉𝑐𝑢
 

0.5, 1, 2, 3 𝜃𝑥/𝐵 

0.5, 1, 2, 3 𝜃𝑦/𝐵 

For illustrating the effect of the scales of fluctuation on the shear strength contours of the model, two cases are shown 

for the shear strength contours with different 𝜃𝑥/𝐵 and 𝜃𝑦/𝐵 ratios (Figure 6). In these figures, ratios of 𝜃𝑥/𝐵  and 𝜃𝑦/𝐵  

are chosen to be equal and the COV(cu) is constant (COV(cu)=0.8). It should be noted that the parameters are assumed 

in order to show the spatial variability of shear strength in a better way. 

 
(a)                                                                 (b) 

Figure 6. The shear strength contours for the model for Cov(cu)=0.8 and equal scale of fluctuation in x 

and y directions a) 0.2, b) 0.8 

For choosing the optimum number of analyses so that the average of the results approximately converges to a constant 

value, a specified case of the bearing capacity problem is investigated. The properties for the spatial variation parameters 

of the shear strength in this problem are listed in Table 4. In this model, the MCS is performed with 1000 analyses; after 

each analysis, the average of statistical population and its COV are calculated. Then, these values are plotted against the 

number of analyses. Figures 7 and 8 indicate the variations of the average NC and its COV with increasing the number 

of analyses in the MCS. 

Table 4. The parameters and their numerical values in the analysis 

Numerical Value Parameters 

10 µ 𝑐𝑢
(Kpa) 

0.6 )ucCov( 

1 𝜃𝑥/𝐵 

1 𝜃𝑦/𝐵 

 

 
Figure 7. Variation of the average NC with increasing the number of analyses in the MCS  
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Figure 8. Variation of the COV of NC with increasing the number of analyses in the MCS 

It can be interpreted from Figures 7 and 8 that after 400 analyses in the MCS, the average statistical population and 

its COV approximately converges to a constant value. This number of analyses can be considered as the adequate number 

of analyses in the MCS for the current study. However, to achieve the results with higher degree of confidence, in the 

current study, the standard number of analyses in the MCS is set to be 500.  

5. Results 

By performing the MCS with 500 analyses for each group of parameters, the probability density functions (PDFs) are 

plotted. Figure 9 shows the PDFs for COV(cu)=0, 0.2, …, 1. In this figure, the values of 𝜃𝑥/𝐵  and 𝜃𝑦/𝐵  are assumed 

to be constant (𝜃/𝐵 = 𝜃𝑦/𝐵 = 𝜃𝑥/𝐵=1.0). It is observed that with the increase in COV(cu), the bell-shaped PDFs 

become wider and also the peak values of the PDFs tend to smaller quantities. From this observation, it can be interpreted 

that by growing the COV(cu), the average values of NC (Average(NC)) reduce while the variance or scatter in NC values 

grow larger; therefore, by increasing the COV(cu), the degree of confidence in the Average(NC) decreases. 

 

Figure 9. Probability density functions of NC for different COV values  
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In Figures 10 and 11, the variations of Average (NC) are drawn vs. Cov(cu) for different ratios of  𝜃𝑥/𝐵 and 𝜃𝑦/𝐵 

respectively. As expected in all of the curves, Average (NC) decrease with the increase in Cov(cu). In Figure 10, it is 

observed that when 𝜃𝑥/𝐵 is constant, the rate of reduction of Average (NC) with the increase in Cov(cu) is higher when 
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𝜃𝑦/𝐵 ratios are lower. This trend is seen in all of the curves of Figure 10. However, the Average (NC) values are 

approximately the same in 𝜃𝑦/𝐵 = 2 and 𝜃𝑦/𝐵 = 3. In Figure 11, in spite of some exceptions, the Average (NC) decreases 

at a higher rate when θy/B ratios are higher; this is the same trend as in Figure 10. By observing the Figures 10 and 11, 

it can also be interpreted that by the increase in 𝜃𝑥/𝐵 and 𝜃𝑦/𝐵 , the maximum reduction in the Average(NC) values 

increases. Therefore the lowest value of Average (NC) is 3.4 that occurs when θy/B and 𝜃𝑥/𝐵 are 3. Thus, the maximum 

reduction in undrained bearing capacity due to spatial variation of shear strength is expected to be 33.3 percent. 

Considering this amount of reduction in the bearing capacity studies can be very effective in the safe design of strip 

footings resting on heterogeneous clay layers. 

  

  

Figure 10. Variations of Average(NC) vs. variations of Cov(cu) in different θy/B curves 

  

  

Figure 11. Variations of Average(NC) vs. variations of Cov(cu) in different θx/B curves 

In Figures 12 and 13, the results are drawn in a different form in order to closely inspect the effect of variations in the 

scales of fluctuation in x and y directions. In Figure 12 and 13 Average(NC) curves are plotted vs. 𝜃𝑥/𝐵 and 𝜃𝑦/𝐵 

respectively for different COV(cu) values. In Figure 12, it is observed that when 𝜃𝑦/𝐵 is constant (𝜃𝑦/𝐵 = 1), by 

growing 𝜃𝑥/𝐵  values from zero, a small decline in Average(NC) first occurs when 𝜃𝑥/𝐵  is lower than unity; however, 

when the values of 𝜃𝑥/𝐵 exceed unity, Average(NC) gradually grow larger with the increase in 𝜃𝑥/𝐵 . In Figure 11, 

𝜃𝑥/𝐵 is set to be constant and equal to unity (𝜃𝑥/𝐵 = 1). It is observed that when 𝜃𝑥/𝐵 is constant, the general trend is 

the increase in Average(NC) by growing 𝜃𝑦/𝐵  . This growing trend augments in higher COV(cu). 
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Figure 12. Variation of the Average (NC) vs. variation of the 𝜽𝒙/𝑩  ratio (𝜽𝒚/𝑩 = 𝟏) 

 

Figure 13. Variation of the Average (NC) vs. variation of the 𝜽𝒚/𝑩 ratio (𝜽𝒙/𝑩 = 𝟏) 

In Figure 14, the results from the current research are compared with the results of Griffiths et al. (2002). Since scales 

of fluctuation in both x and y directions are assumed to be equal in the study by Griffiths et al. (2002), in this figure, the 

θ parameter which is equal to 𝜃𝑥 and 𝜃𝑦 is used (θ = 𝜃𝑥=𝜃𝑦). By observing the resulting charts, it can be interpreted that 

the general trend in the results of current study is similar to that in former researches. 

 
Figure 14. Comparison of results of the current study with the results of Griffith et al. (2002) (Cov(cu)=1) 
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5.2. Multiple Regression Analysis  

In this study, MRA is implemented to obtain a simple equation to calculate Average (NC) and COV(NC). Equation 7 is 

proposed for computation of Average (NC). The relevant factors for this equation and the Pearson correlation coefficient 

(R) are listed in Table 5. 

(7) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑁𝑐) = 𝑎1 × (𝜃𝑥/𝐵 ) + 𝑏1 × (𝜃𝑦/𝐵) + 𝑐1 × 𝐶𝑜𝑣(𝑐𝑢) + 𝑑1  

Table 5. The numerical values for the coefficients in equation (7) 

Value Coefficient 

0.04666596 a1 

-0.013142876 b1 

-1.430991893 c1 

5.075644975 d1 

0.99 R 

As shown in Table 5, the R-value is 0.99 for Equation 7. This value indicates the high linear correlation of numerical 

results with the results from the proposed equation. 

In Figure 15, the predicted values for Average (NC) are plotted versus Average (NC) from numerical modellings and 

in Figure 16, residuals of the results of Equation 7 from numerical values are presented in percent. It is observed that the 

maximum error of Equation 7 is ±8 in percent. This amount of error is reliable considering the applied statistical 

procedures, estimations in numerical models and existing uncertainties in shear strength estimations for experimental 

field problems. 

 

Figure 15. The predicted values for average NC vs. average NC from numerical modelling 

 

Figure 16. Residuals for the predicted average NC values and average NC values from numerical modelling 
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For computation of the existing uncertainty in Average(NC), with the knowledge of the spatial variability parameters 

(i.e., COV(cu), 𝜃𝑥/𝐵  and 𝜃𝑦/𝐵  ), Eq. (8) is proposed. The values for relevant unknown factors in this equation and R-

value are listed in Table 6. 

(8) 𝐶𝑜𝑣(𝑁𝑐) = 𝑎2 × (𝜃𝑥/𝐵 ) + 𝑏2 × (𝜃𝑦/𝐵) + 𝑐2 × 𝐶𝑜𝑣(𝑐𝑢) + 𝑑2  

Table 6. The numerical values for the coefficients in Eq. 8 

Value Coefficient 

0.044315985 a2 

0.028627308 b2 

0.432901177 c2 

-0.078440695 d2 

0.96 R 

 

The graph for the values predicted from Equation 8 for Cov(NC) versus numerical results is plotted in Figure 17. 

Figure 18 shows the deviations of the predicted values using Equation 8 with the numerical results. It is observed that 

the errors of this equation grow when COV(NC) is lower, especially when COV(NC) is close to zero. Therefore, when 

COV(NC) is trivial, the errors of the Equation 8 grow beyond expectations. However, by considering Figures 17 and 18, 

it can be deduced that Equation 8 presents reasonable results with tolerable errors when COV(cu) is between 0.2 and 1.  

It is obvious that when COV(NC) is higher, the scatter in the predicted Average(NC) from numerical models becomes 

larger; hence, the design of the footing must be performed using more conservative values of Average(NC). In other 

words, when the COV(NC) grows larger, the designer must use higher safety factor for design of strip footings on 

nonhomogeneous clays. 

 
Figure 17. The predicted values for the COV(NC ) vs. the COV( NC ) from numerical modelling 

 
Figure 18. Residuals for the predicted COV(NC ) values and values of the COV(NC ) from numerical modelling 
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6. Conclusion 

In this study, the effect of spatial variability of the undrained shear strength was investigated on the bearing capacity 

of shallow strip footings. Numerical modelling was performed using the FDM to compute the bearing capacity and to 

take into account the spatial variability of the undrained shear strength, the random field theory was implemented. The 

MCS was utilized to generate a distribution from the calculated bearing capacity from numerical models. The mean and 

COV of the generated distribution were used to assess the effect of spatial variability of the undrained shear strength on 

the bearing capacity of footings on clays.  

The predominant trend in the results was the reduction of the average bearing capacity when the variance of the shear 

strength increased. By growing the variability of the shear strength in the field, the uncertainty in the calculated average 

results increases. Thus, more conservatism must be considered when the spatial variation in the field increases. The 

maximum reduction of undrained bearing capacity by regarding spatial variability of undrained shear strength was 

observed to be 33.3 percent; thus, the spatial variability of heterogeneous clay could have significant effect on the safe 

design of footings. Despite the existence of some exceptions, the general trend which was observed in the results is the 

growing of undrained bearing capacity by the increase in the scales of fluctuation in both x and y directions. Finally, 

two simple equations were proposed to consider the spatial variability of the shear strength on the bearing capacity of 

footing on clay layers. 
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