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Abstract 

Moisture damage in asphaltic mixtures is defined by the loss of durability and resistance caused by the effect of moisture. 

The most common way to improve moisture damage in asphaltic mixtures is to use anti-strip additives. This study tended 

to use dry resin polymer additive to make a moisture-resistant asphaltic mixture. Two types of aggregate indicating 

different sensitivities against moisture were studied. In order to compare the effect of this material with other anti-strip 

additives, this study evaluated the effect of hydrated lime on reducing moisture damage and comparing its effect with dry 

resin polymer additive. The effect of these materials was evaluated by mechanical and thermodynamic concepts using 

indirect tensile ratio and surface free energy. The results indicated that dry resin polymer used in this study increased 

alkaline content and reduced acidic content of bituminous surface free energy, resulting in more adhesion between acidic 

aggregates which are more sensitive to resistance. It also improved bitumen-aggregate adhesion and reduced strip rate. 

Moreover, hydrated lime as an aggregate anti-strip agent and dry resin polymer as a bituminous modifier significantly 

increased the resistance of warm asphalt mixtures against moisture. The results of this study show that dry resin polymer 

can be used as an anti-strip agent instead of hydrated lime with operational problems. 

Keywords: Asphalt Mixture; Moisture Damage; Anti-Strip Additive; Dry Resin Polymer; Indirect Tensile Strength; Surface Free Energy. 

 

1. Introduction 

The best way to improve roads is not to spend more on them, but to improve the design, construction and maintenance 

of roads. Most of the cost of asphalt stone aggregates is not followed by a good result due to moisture problems. 

Degradation of asphalt compounds by moisture can be defined by early loss of strength and durability due to moisture 

penetration in asphalt mixture and rock materials. As a result of construction and maintenance costs and low useful life 

of asphalt pavements, particularly in wet and humid areas, efforts have been made to produce moisture resistant asphalt 

mixtures. Many road organizations have made extensive efforts to reduce costs of pavement maintenance. One of the 

damages which cause excessive costs in asphalt pavements is moisture damage [1]. 

Moisture damage is defined as the loss of mechanical properties of material as a result of the presence of water in 

asphalt mixtures. This damage, in addition to being a significant failure, can cause or aggravate other failures such as 

fatigue cracking, grooving, separating bitumen from aggregates and pits in asphalt pavements. Severity of moisture 

damage, which is also called stripping, is related to internal and external factors. Internal factors are related to properties 

of materials used in asphalt mixtures, while external factors include environmental conditions, production and 

implementation methods, pavement design and traffic intensity. Although moisture damage has been respected by 
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researchers for more than 70 years, many aspects of this kind of damage are still unknown [2]. There are two key 

questions in this regard: 1) the ways which can reduce moisture damage; and 2) the ways which can precisely predict 

potential moisture damage [3]. Currently, there is a need to use new materials in structure of asphalt mixtures to reduce 

moisture damage due to expansion of pavement network, increased traffic, presence of larger and heavier trucks, and in 

some places, the more violent environmental conditions [4-7]. There are two main methods for improving bituminous-

aggregate adhesion and consequently reducing moisture damage in asphalt mixtures. The first method is to use liquid 

anti-strip additives to bitumen to improve bituminous bonding properties and bituminous-aggregate adhesion. Liquid 

anti-strip agents are in fact chemical activators which, by changing the bitumen structure, increase bitumen-aggregate 

adhesion and lead to better coating of bitumen on the aggregate surface. Most of liquid anti-strip agents are from the 

family of amines or amidoamines [7]. The second method is to use surface coatings of aggregates using suitable materials 

which change surface properties of aggregates, particularly acidic aggregates, and reduce hydrophilic tendency of this 

type of aggregates, so that stripping is reduced when the water enters the bitumen-aggregate system. The most widely 

used materials are hydrated lime or polymers [6, 8, 9]. Although using these materials reduces moisture damage in 

asphalt mixtures, their use is associated with a series of problems [10-15]. Regarding technical and executive problems 

in using anti-strip materials, this study tends to investigate the use of anti-strip polymeric materials. 

2. Literature Review 

Moisture damage or sensitivity of asphalt mixtures, which can be referred to as potential stripping, is one of the 

major failures occurring in asphalt concrete pavements. It should be noted that the effect of presence of moisture in 

asphalt mixtures is not considered as the main cause of pavement failure, because two main causes of pavement failure 

are traffic load and temperature changes; however, migration of moisture into the asphalt mixture can significantly 

increase vulnerability of asphaltic concrete to each of the above factors. In previous texts, broad definitions of this 

concept can be found, generally in which the phenomenon of bitumen-aggregate separation or rupture of bitumen in a 

compressed asphalt mixture, under repeated load of traffic and mainly under water or steam vapour, is called stripping 

[16]. 

Fromm and Lotman [17] were the first to investigate the effects of micro-scale moisture damage. Fromm (1974) 

generally considered two mechanisms for moisture damage; the first mechanism was to create water emulsion in bitumen 

and movement of water particles inside bitumen layer until reaching the aggregate surface, and the second mechanism 

was to fail bitumen layer caused by an interfacial tension between interfaces of three air, bitumen and water phases. The 

first mechanism is, in fact, theoretical foundations of a phenomenon which has been discussed later as propagation 

phenomenon in various studies, and the second mechanism is generally observed in recent studies on mutual relationship 

between moisture damage and application of mechanical load [12, 18, 19]. 

In various writings [20, 21], there are five stripping mechanisms, including separation, displacement, spontaneous 

emulsion, pore water pressure and hydraulic boiling. Other studies have presented other mechanisms which may 

contribute to moisture damage. These include instability in pH and environmental effects on bitumen-aggregate system. 

A study evaluated moisture sensitivity of aggregates and bitumen by understanding the micro-mechanism which 

affects bitumen-aggregate adhesion and strength of bonding and bitumen durability. The results of this study indicated 

that the strength of mixtures is related to moisture damage by calculating adhesion energies and cumulative failure in 

dynamic mechanical analysis. The method developed in this study was used to evaluate six asphalt mixtures which 

showed good and poor field performance. It has been shown that field strength of mixtures is related to moisture damage 

by calculating adhesion energies and cumulative failure in dynamic mechanical analysis [24]. In 2006, Bhasin [25] 

examined and developed laboratory and analytical tools to determine the significance of important properties affecting 

the moisture failure of asphalt mixtures. The results of these parameters were obtained for nine different aggregate-

bitumen compounds (three types of aggregates and three types of bitumen). Using these 9 aggregate-bitumen 

compounds, compressed asphaltic mixtures were constructed and dynamic modulus tests in compression, tension and 

creep were performed. The results presented in this study were not validated by laboratory tests or field tests. 

In his study, Copeland used a computational-experimental method to quantify moisture damage at aggregate-mastic 

contact surface based on the loss of adhesion strength which was determined by pull-off test and moisture content at the 

contact surface [26]. A study was conducted in 2007 at the University of Oklahoma in the form of PhD dissertation. In 

this study, a basic method was used based on properties of surface free energy of bitumen and aggregates to describe 

bitumen-aggregate interfacial relationships in the moisture damage process [27]. In another study, a qualitative-

quantitative method based on surface energy was used to assess moisture damage. Surveys of this study showed that 

surface energy, as dynamic modulus, is able to predict moisture damage. Moreover, hydrated lime significantly 

improved mixture strength against moisture [28]. This study focused on assessment of surface energy and moisture 

sensitivity of wide compounds of bitumen and aggregates. Moisture damage analysis used in this study was based on 

dynamic mechanical analysis which was used in some previous studies [29]. 
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Many studies have been done on application of hydrated lime in asphalt mixtures. Hydrated lime will be able to 

improve fatigue strength of asphalt pavements as a result of improved bitumen due to its high stiffness and improved 

resistance to stripping of asphalt mixtures by slightly changing properties of the bitumen used. Other properties of 

hydrated lime include the increased stiffness modulus, increased moisture resistance and prevention of crack types and 

increased creep resistance [30]. Hamedi (2017) presented the theoretical and experimental concepts of predicting 

moisture damage in asphalt concrete mixes using the surface free energy (SFE) concept and laboratory dynamic test, 

respectively. The results of this study show that the polyvinyl chloride (PVC) coating decreases significantly the total 

SFE and polar SFE, and leads to an increase in the non-polar SFE of the aggregates, which make aggregates be 

hydrophobic. This occurrence increases the coating ability of aggregates by the asphalt binder [31]. Rafiq  Kakar  et al. 

(2015) considered the use surface free energy evaluation as  a fundamental material property to assess mixture 

performance. Ceca base chemical surfactant additive was used to prepare warm mix asphalt binders. The results show 

that the use of the surfactant-based additive reduces surface free energy.  It increases after short-term (Rolling Thin Film 

Oven) and reduces after long-term (Pressure Aging Vessel) aging [32].  

Peyman Mirzababaei (2016) aimed to determine effects of zycotherm- a liquid and nano-organosilane warm mix 

and anti-stripping additive- on water susceptibility of Warm Mix Asphalt mixtures prepared with different aggregate 

types and gradations. The results indicated that although zycotherm significantly improves water susceptibility 

performance of asphalt mixtures pre- pared with all aggregate types and gradations, it does not function properly as a 

WMA additive because an effective additive should improve both the unconditioned and moisture conditioned 

characteristics of bituminous mixtures to make sure appropriate performance of asphalt pavements in the long run [33]. 

Shafabakhsh et al. (2015) aimed to improve it by reinforcing the adhesion between asphalt binder and aggregate. An 

anti-stripping additive named nanotechnology Zycotherm (NZ) was used to achieve this goal. The findings showed that 

adding NZ was a successful technique to compensate the deteriorated adhesion due to using sulfur. Also it was 

demonstrated that SFE test results were so compatible with the common mechanical tests in predicting moisture damages 

[34]. Zhang et al. (2016) evaluated the moisture sensitivity of different aggregate–bitumen combinations through three 

different approaches: surface energy, peel adhesion and the Saturation Ageing Tensile Stiffness (SATS) tests. The 

surface energy tests showed that the work of adhesion in dry conditions was bitumen type dependent, which is in 

agreement with the peel test. After moisture damage, all of these three tests found that the moisture sensitivity of 

aggregate–bitumen combinations were mainly aggregate type dependent. Based on the peel test, the moisture absorption 

and mineralogical compositions of aggregate were considered as two important factors to moisture sensitivity [35]. Ziari 

et al. (2017) considered amorphous carbon powder, a by-product of paraffin production factory, is used as a replcement 

of filler (25, 50, 75, and 100%) and as a modifier of bitumen (5, 10, and 15%) to improve the hydrophobicity of mixtures. 

The   results showed that not only did   the hydrophobic powder improve the moisture sensitivity, but it also increased 

the rutting resistance of mix- tures. Dynamic creep and wheel tracking test results showed bitumen modified mixtures 

are more resistant to mechanical deformation [36].  

3. Materials and Methods 

3.1. Rock Materials 

Two types of aggregates with different properties against moisture damage were investigated in this study: limestone, 

which is known as a moisture-resistant aggregate, and granite, which is known as a hydrophilic aggregate and sensitive 

to moisture damage. Chemical and physical compounds of these aggregates are presented in Table 1 and Table 2, 

respectively. Aggregation used in this study is shown in Figure 1. 

Table 1. Properties of mineral aggregates used in this study 

Aggregate 
Silicon dioxide 

(SiO2) 

R2O3 
(Al2O3+Fe2O3) 

Aluminium oxide 
(Al2O3) 

Ferric oxide 

(Fe3O4) 

Magnesium oxide 

(MgO) 

Calcium oxide 

(CaO) 

Limestone 3.8 18 1 0.4 1.2 51.3 

Granite 68.1 16.2 14.8 1.4 0.8 2.4 

Table 2. Physical properties of rock materials [31] 

Test Standard Granite Limestone Allowed limit 

Special weight (coarse-grained) ASTM C 127    

Bulk  2.651 2.622 ----- 

SSD  2.657 2.628 ----- 

Apparent  2.659 2.631 ----- 

Special weight (fine-grained) ASTM C 128    

Bulk  2.646 2.614 ----- 
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SSD  2.648 2.617 ----- 

Apparent  2.653 2.622 ----- 

Special weight (filler) ASTM D854 2.626 ----- 

Allowable wear ASTM C131 17 22 Max 30 

Fracture percentage in two sides ASTM D5821 94 91 Min 80 

Long and broad particles (%) ASTM D 4791 11 8 Max 15 

 

Figure 1. Aggregation used for grains [37] 

3.2. Dry Resin Polymer 

Dry resin is a powder polymer from the family of macromolecular polymers produced by polymerization of vinyl 

and acrylate copolymers. This product quickly forms an emulsion in water, which provides high adhesion to different 

surfaces, flexibility and high resistance to environmental conditions when drying up. 

3.3. Hydrated Lime 

In this study, high-calcium hydrated lime was used as an additive to asphalt mixture to improve resistance to striping 

of asphalt specimens. Properties of the hydrated lime are listed in Table 3.  

Table 3. Properties of the used lime 

Minimum wt.% 

calcium hydroxide 
Maximum wt.% 

free lime 
Maximum wt.% 

free water 
Maximum wt.% retained on 

the sieve 6 mm (# 30) 
Maximum wt.% retained on the 

sieve 0.075 mm (# 200) 

90 7 3 2 12 

3.4. Bitumen 

In this study, bitumen used was a pure bitumen with a penetration grade of 60.70 which was produced in Isfahan 

Refinery; properties of basic and modified bitumen are presented in Table 4. 

Table 4. Properties of the bitumen used for specimens 

Type of bitumen 
Degree of penetration 

(mm/10) 
Flashpoint 

(°C) 
Ductility 

(cm) 

Viscosity (mPas) Softness point 

(°C) 115℃ 135℃ 150℃ 

Basic bitumen 69 313 112 0.156 0.289 0.776 47 

Basic bitumen with 2% dry resin polymer 64 327 114 0.174 0.318 0.942 53 

Basic bitumen with 4% dry resin polymer 62 335 119 0.208 0.359 0.997 56 
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Figure 2. Bitumen refinement using two types of dry resin polymer powder 

3.5. Construction of Specimens 

Design and mixing of asphalt mixtures was done using standard Marshall Design with 75 strokes on each side of 

cylindrical specimens. Samples were compressed and tested according to standard methods. Optimal bitumen content 

for limestone and granite aggregates was 5.5 and 5%, respectively. 

3.6. Number of Specimens 

In this study, dry resin material was used as bitumen modifier in two different percentages relative to bitumen weight 

(2 and 4% bitumen weight). For this purpose, 8×15 specimens (120 specimens) should be made. Moreover, optimal 

bitumen content was measured for the specimen with unmodified bitumen and limestone and granite aggregates. For 

each bitumen percentage, 3 specimens were made with two iterations and Marshall Test was performed; totally, 60 

specimens were tested. 

Table 5. Number of asphalt mixture specimens for testing optimal bitumen and moisture sensitivity 

Type of aggregate Type of bitumen Test Objective Number of specimens 

Granite Unmodified bitumen Marshal Determine optimal bitumen content 30 

Limestone Unmodified bitumen Marshal Determine optimal bitumen content 30 

Granite Unmodified bitumen Indirect tensile ratio Determine moisture sensitivity 15 

Limestone Unmodified bitumen Indirect tensile ratio Determine moisture sensitivity 15 

Granite 
Bitumen modified with 

2% dry resin polymer 
Indirect tensile ratio Determine moisture sensitivity 15 

Limestone 
Bitumen modified with 

2% dry resin polymer 
Indirect tensile ratio Determine moisture sensitivity 15 

Granite 
Bitumen modified with 

4% dry resin polymer 
Indirect tensile ratio Determine moisture sensitivity 15 

Limestone 
Bitumen modified with 

4% dry resin polymer 
Indirect tensile ratio Determine moisture sensitivity 15 

Granite modified 

with hydrated lime 
Unmodified bitumen Indirect tensile ratio Determine moisture sensitivity 15 

Granite modified 

with hydrated lime 
Unmodified bitumen Indirect tensile ratio Determine moisture sensitivity 15 

3.7. Experiments on Asphalt Specimens 

In this study, Marshall mixing design tests based on ASTM D1559, Marshall Strength test, moisture damage 

sensitivity test AASHTO T283, measurements of bituminous surface free energy components and measurement of 

surface free energy components of aggregates were used. 

3.8. Marshall Mixing Test According to ASTM D1559 Standard 

 In this study, Marshall mixing design was used to determine the optimum bitumen content. 

 Selection of the type of aggregate used in the mixes based on the proposed aggregate in the regulations of 

pavement of roads in Iran. 
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 In the Marshall method, granular aggregates are mixed in proportion to the percentages of each granulation to 

1200 g of rock materials. 

 These 1200 grams of specimens are placed in a temperature of 160-170 degrees for 24 hours to evaporate the water 

in the rock mass. Then the bitumen, which is heated to 135 ° C, is poured into five percent by weight, as a mixture of 

asphalt mixture, mixed with mortar and molded in Marshall molds, which have a diameter of 1/10 and a height of 25/6 

cm. It is worth noting that the percentage of bitumen should be selected in such a way that the optimum amount of 

bitumen is within the range of percentages. Finally, the compression action is carried out by 75 impacts (for heavy 

traffic) Marshall Hammer, which weighs 4.5 kilograms and falls to a height of 45 centimetres. 

3.9. Testing the Specific Gravity of the Actual Asphalt Samples 

After the prototypes were made and after gradual cooling (at least after two hours), the samples were 

assisted. Hydraulic jacks are removed from the marshall mould. The diameter and height of each of the specimens were 

measured by a ruler and measured in three stages, and their mean as the diameter and height of the sample is reported. 

Then weigh each of the samples in air and in water, weigh the numbers and calculate the difference of these two weights, 

the sample size. Finally, the actual gravity of the asphaltic sample is calculated. 

3.10. Marshall Strength Test 

Marshall Specimens are placed in thermostat at 60 ± 10 ° C after determining the specific gravity for 30 to 40 minutes 

in a hot water bath. Care should be taken that the placement of samples in water should be such that all of them can be 

removed within 30 to 40 minutes and tested on them. A few minutes before removing the first sample of the warm water 

bath, the Marshall's jaw is placed in the oven and lubricated a few moments before the start of the test. Then the 

specimens are placed inside the jaw and applied. Finally, the relative strength and deformation values of each one are 

recorded. A view of the Marshall Strength Test is shown in Figure 3. 

 

Figure 3. Shows the gauge and measuring device for the relative deformation of asphalt samples 

3.11. Rice Test 

To measure the percentage of free space of the asphaltic mixture, the test is called Rice test. In this test, samples 

taken from the Marshal machine are placed inside the oven to open well. Then, with a four-part operation, about 120 

grams of the mixture are selected and poured into the arsenic where it’s dry and high water content is obtained. More 

than one-third of the volume of the erlon containing the asphalt sample is filled with water and, after closing the door, 

attaches to the vacuum device to remove air from asphalt particles. Finally, by removing all the air between the mixed 

particles, the eagle is separated from the device and the mark line is filled with water and its weight is measured. In 

Figure 4, the Rice test equipment is visible. 
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Figure 4. Rice Test Equipment 

3.12. Sensitivity Test for Moisture Failure Using AASHTO T283 

Resistance to weathering (moisture sensitivity) Asphalt mixtures have been evaluated by decreasing the amount of 

indirect tensile strength after the ice-melting cycle based on the AASHTO T283 standard. 

The tensile strength of a gravel asphalt mix is determined by bitumen bonding and bituminous-aggregate adhesion. 

The tensile strength is expressed by the maximum load that the sample can withstand before rupture. Asphalt mixtures 

with higher tensile strengths can provide better resistance to fatigue and rupture. Therefore, any additive that can provide 

a higher tensile strength for asphalt mixtures in wet and dry conditions can improve the long-term performance of the 

asphalt mix. This test consists of loading on cylindrical samples with vertical compressive loading, which causes a 

tensile stress of approximately uniformity along the vertical diagonal plate. Rupture usually occurs in the shape of the 

separation along this page. 

The most commonly used test is to examine the strength of asphalt mixtures against moisture damage and also to 

investigate the effect of anti-scaling materials. Sufficient materials are mixed to produce at least 6 samples of the hot 

mix as a percentage of the optimum bitumen specified in the previous section. More samples are needed when one of 

the samples is in trouble or the maximum specific gravity of the specimens is not specified. Before carrying out the 

original experiment, a number of tests are needed to find the number of impacts needed to compress the original samples 

to achieve a percentage of 7 ± 1 cavity. The percentage of air cavities is specified in accordance with the AASHTO 

T269 standard. When the number of bouts and specimens were compressed, the specimens were divided into two groups 

of dry specimens and specimens under wet conditions. Then, the specimens that are set to under the conditions are 

placed under vacuum conditions to reach a saturation degree of 55-80%. Saturated specimens are stored in a freezer at 

-18 ° C for 16 hours and kept in a water bath at 60 ° C for 24 hours. The remaining specimens are stored in dry conditions. 

All samples are brought to the same laboratory temperature (25 ° C) and an indirect tensile strength test is performed on 

the specimens. The test and loading procedure is shown in Figure 3-6. The loading rate in this experiment is 2 inches 

per minute (about 50.8 mm / min). 

 

Figure 5. How to test and how to load in the indirect tensile strength test 

4. Results and Discussion 

4.1. Moisture Sensitivity Test in Specimens Modified with Dry Resin Polymer 

Moisture Sensitivity Test by AASHTO T283: The results of indirect tensile strength of specimens in different ice-melt 

cycles are shown in Figures 2 and 3. Obviously, indirect tensile of the specimens is reduced by increasing the number 
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of ice-melt cycles. The decrease in indirect tensile strength of specimens by increasing the number of ice-melt cycles 

can be attributed to the loss of mixture adhesion or bitumen bonding due to exposure of more samples to moisture. It 

can be concluded from the data presented in these two figures that addition of dry resin polymer as an anti-striping agent 

increases adhesion and bonding in the mixture and does not allow rapid displacement of bitumen on aggregate surfaces, 

which results in higher resistance of the mixture to moisture following ice-melt cycles than specimens without dry resin 

polymer additives. 

 

Figure 2. Relationship between ITS and percentage of dry resin polymer additives in different ice-melt cycles in specimens 

made with granite aggregate 

 

Figure 3. Relationship between ITS and percentage of dry resin polymer additives in different ice-melt cycles in specimens 

made with limestone aggregate 

Figure 4 and Figure 5 represent TSR values for compounds made with a dry resin polymer in this study. It is known 

that increase in the number of ice-melt cycles reduces TSR. The specimens made with limestone and 4% dry resin 

polymer have the highest TSR (92%) in the first cycle, which is reduced to 75% at the end of the fifth cycle. 

The results related to addition of dry resin polymer indicate that addition of these materials in all percentages used 

in this study has a positive effect on TSR value. Adding 2% of these materials leads to a significant increase in TSR 

value. However, this increase in 4% additive compared to 2% additive is not significant. This means that more than 2% 

increase in this material is not logical as it increases cost of the mixture and has a positive effect in increasing resistance 

to moisture damage compared to 2% specimens. 

It can be concluded from Figure 4 and Figure 5 that addition of anti-strip agents increases adhesion and bonding in 

the mixture and does not allow rapid displacement of bitumen on aggregate surfaces, which results in higher resistance 

of the mixture to moisture following ice-melt cycles than specimens without additives. 
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Figure 4. Relationship between TSR and percentage of dry resin polymer additives in different ice-melt cycles in specimens 

made with granite aggregate 

 

Figure 5. Relationship between TSR and percentage of dry resin polymer additives in different ice-melt cycles in specimens 

made with limestone aggregate 

4.2. Microscale Study of Moisture Damage by Surface Free Energy 

Bituminous Surface Free Energy Components: Surface free energy components of bitumen used in this study are 

measured by Wilhelm plate method. To measure surface free energy components of bitumen, three test fluids are 

required; the materials used, along with their surface energy components, are shown in the table below. 

Table 6. Surface free energy components of basic and modified bitumen along with their contact angles with test fluids 

Pure bitumen modified with 4% 

dry resin polymer 

Pure bitumen modified with 2% 

dry resin polymer 

Pure 

bitumen 
Type of bitumen 

121.36 124.22 127.14 Contact angle with water 

110.98 113.93 116.85 Contact angle with glycerol 

107.18 110.60 114.18 Contact angle with fomamid 

26.85 21.44 15.89 Total free energy (erg/cm) 

24.11 19.04 13.69 Non-polar free energy (erg/cm) 

2.74 2.40 2.20 Polar free energy (erg/cm) 

1.92 2.09 2.58 Acidic component of free surface energy (erg/cm) 

0.98 0.69 0.47 Alkaline component of free surface energy (erg/cm) 

 

Aggregate Surface Free Energy Components: surface free energy of aggregates is measured using USD. In this study, 

two types of granite and limestone aggregate were used. The results presented in Table 7 show that limestone, which is 

considered as alkaline aggregate, is expected to have a larger alkaline component of surface free energy than granite, 

and in contrast, granite has a larger acidic component than limestone aggregate. 
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Table 7. Free energy components of two types of aggregates used in this study 

Acidic component Alkaline component Polar component Non-polar component Total surface free energy Type of aggregate 

11.49 317.36 120.77 204.29 325.06 Granite 

8.27 448.29 121.78 114.96 236.74 Limestone 

Adhesion Free Energy Components: As previously noted, adhesion free energy is positive and larger positive values 

indicate that a better adhesion is provided. The results of free surface energy of adhesion between bitumen and 

aggregates used in this study before and after modification using dry resin polymer are presented in Table 8. 

As shown in Table 8, dry resin polymer leads to an increase in bitumen-aggregate adhesion free energy (closer to 

zero), which means that the system tendency to strip and achieve a stable state is reduced by the lowest energy. An 

increase in dry resin polymer content further reduces the tendency. In addition to adhesion free energy, primary energy 

required for striping is also important. Obviously, dry resin polymer additives significantly increase free energy of 

bitumen-aggregate adhesion. An increase in dry resin polymer leads to further increase and reduces potential striping. 

Table 8. Adhesion free energy in dry and wet conditions 

Bitumen-water Water-aggregate 
Bitumen-aggregate in 

the presence of water 
Bitumen-aggregate Type of bitumen 

Type of 

aggregate 

67.00 

347.62 

-92.07 167.64 Basic bitumen 

Granite 69.95 -83.88 181.87 
Bitumen modified with 2% dry 

resin polymer 

73.84 -75.42 196.44 
Bitumen modified with 4% dry 

resin polymer 

67.00 

343.00 

-103.80 151.30 Basic bitumen 

Limestone 
69.95 -101.57 159.57 

Bitumen modified with 2% dry 

resin polymer 

73.84 -97.58 169.66 
Bitumen modified with 4% dry 

resin polymer 

4.3. Moisture Sensitivity Test of Specimens Modified with Hydrated Lime 

To compare the effect of dry resin polymer with conventional anti-striping additives of hydrated lime, moisture 

sensitivity was tested in specimens containing hydrated lime. The results of ITS test are presented in Figures 6 and 7. 

By comparing these results and specimens containing dry resin polymer, it can be seen that hydrated lime has less 

adhesion compared to dry resin polymer in dry conditions. In wet conditions, ITS values of specimens containing 

hydrated lime and specimens containing bitumen modified with dry resin polymer are closely matched. 

 

Figure 6. Relationship between ITS in different ice-melt cycles in specimens made with granite and hydrated lime 
aggregates 
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Figure 7. Relationship between TSR in different ice-melt cycles in specimens made with limestone and hydrated lime 
aggregates 

TSR results of different specimens are presented in Figure 8 and 9. The results of these figures show that hydrated 

lime significantly improves moisture sensitivity of specimens made with granite aggregate. This anti-striping agent 

results in higher resistant mixture compared to specimens with dry resin polymer in the early ice-melt cycles; in the 

higher ice-melt cycles, however, this trend is reversed. In fact, it can be claimed that specimens made with dry resin 

polymer additive will have a better resistance to moisture damage in higher ice-melt cycles. 

 

Figure 8. Relationship between TSR in different ice-melt cycles in specimens made with granite and hydrated lime 
aggregates 

 

Figure 9. Relationship between TSR in different ice-melt cycles in specimens made with limestone and hydrated lime 
aggregates 
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The most important studies of moisture breakdown or water failure in asphalt mixtures are associated with known 

processes known as scavenging. The detachment is the process of removing bitumen from the aggregate surface, which 

is the reason for this increase in gravity between aggregate and water relative to aggregate and bitumen. Several factors 

determine the amount of moisture breakdowns that are used to improve this type of failure, with the use of anti-scrubbing 

additives most important. The main objective of the current study is to make an asphalt mixture resistant to moisture 

damage. Regarding the methods used to reduce moisture sensitivity noted above, this study tended to use suitable anti-

striping materials and changes in materials of asphalt mixtures to resist them favourably against moisture damage. 

Numerous additives were considered in design process and primary tests; key factors such as reinforcement of asphalt 

mixture to moisture (which is the most important objective of this study), lack of deficiencies in other technical 

properties of the mixture, operational considerations, economic considerations and environmental considerations were 

the most important of these. Additives considered for modification of aggregates, such as hydrated lime, are added 

directly to aggregates to correct the surface charge of aggregates or to modify the bitumen in the interface of bitumen 

and aggregate. These additives are mainly used when coarse grains is susceptible to striping because it is easier to add 

them to coarse grains rather than fine grains. Choice of additive type varies based on: 1) effect on adhesion properties; 

2) effect on mixture properties; 3) percentage required; 4) economic problems. Despite positive effect of hydrated lime, 

its use is associated with performance problems. Accordingly, this study tended to introduce new anti-striping agents 

and their microscale analysis on moisture damage. It was also attempted to compare moisture sensitivity of specimens 

modified with dry resin polymer and specimens modified with hydrated lime. 

5. Conclusions 

Here are the most important results of this study: 

 Adding dry resin polymer increases adhesion and bonding in the mixture and does not allow rapid displacement 

of bitumen on the aggregate surfaces, which results in higher resistance of the mixture to moisture following ice-

melt cycles than specimens without additives. 

 The best percentage of anti-striping additives is different depending on the type of aggregate and bitumen and the 

tests used to determine moisture sensitivity can be used to determine optimal percentage of these materials. As 

the results of this study also showed, increasing dry resin polymer content from 2 to 4% did not have a notable 

effect on improving asphalt mixture resistance compared to specimens containing 2% dry resin polymer. 

 Indirect tensile strength of specimens modified with dry resin polymer increased both under wet conditions and 

dry conditions. 

 Addition of dry resin polymer significantly increases resistance to moisture damage and increases TSR value in 

the specimens modified with this material compared to specimens containing controlled aggregates. 

 Dry resin polymer increased non-polar component of total surface free energy of bitumen. 

 Dry resin polymer increases alkaline component and reduces acidic component of bituminous surface free energy, 

resulting in more adhesion between acidic aggregates and bitumen. 

 Aggregates have high polar energy, because of which non-polar bitumen hardly covers aggregates. Correction 

with dry resin polymer changes the bitumen properties and increases its coating capability. 

 Correction with dry resin polymer increases adhesion free energy, which increases bitumen-aggregate adhesion. 

 Limestone relatively performs better against moisture, because changes in free energy of its adhesion to bitumen 

in the presence of water is lower than granite. 

 As expected, hydrated lime improved resistance of asphalt mixtures to moisture. 

 Performance of hydrated lime in early ice-melt cycles was better than dry resin polymer; this performance 

changed in higher cycles and specimens with dry resin polymer performed better against resistance damage based 

on AASHTO T283. 
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